COMP 330 Fall 2023 Assignment 1 **Due date:** 21st Sept 2023

Posted on September 5^{th} 2023

This is the first of 6 assignments. There are 5 questions for credit. The homework is due on CrowdMark at 11:59pm.

Important: Solutions have to be in **pdf** format. Every question must be on a **separate** pdf and submitted through Crowdmark. We prefer solutions prepared on LaTeX but that is **not required**. We will **not** accept jpg photos of handwritten solutions. We will not accept Word documents. Either of these formats can be exported to pdf. **TAs will remove marks for blurry/illegible submissions**.

Question 1. [20 points] Prove the following proposition (left as an exercise) from the Lecture 1 notes. Given a set X and an equivalence relation R defined on X and given $x, y \in X$ we have either $[x]_R = [y]_R$ or $[x]_R \cap [y]_R = \emptyset$ but not both.

Question 2. [20 points] Fix a finite alphabet Σ and let $\emptyset \neq L \subseteq \Sigma^*$. We define the following relation R on strings from Σ^* :

$$\forall x, y \in \Sigma^*, xRy \text{ if } \forall z \in \Sigma^*, xz \in L \text{ iff } yz \in L.$$

Prove that this is an equivalence relation.

Question 3. [15 points] Provide **deterministic** finite automata accepting the following languages over the alphabet $\Sigma = \{a, b\}$.

- 1. [5 points] $L_1 = \{ w \in \Sigma^* : w \text{ contains the substring } aba \}$
- 2. [5 points] $L_2 = \{ w \in \Sigma^* : |w| \ge 1, w \text{ starts with } a \text{ or ends with } b \}$
- 3. [5 points] $L_3 = \{ w \in \Sigma^* : |w| \ge 2, \text{ the second to last letter of } w \text{ is } b \}$

A proof of correctness is not required. No points will be awarded if you provide an NFA.

Question 4. [30 points] Let $\Sigma = \{0, 1\}$ and consider the following language

 $L = \{ w \in \Sigma^* : w \text{ contains the substring } 10 \text{ or } 01 \}$

1. [10 points] Give a **minimal deterministic** finite automaton M accepting L.

- 2. Provide a "proof sketch" which shows the correctness of your automaton. To do this, use the technique showed in class. That is,
 - a. [5 points] Make a claim about your machine's extended transition function δ^* . You do not need to prove your claim.
 - b. [5 points] Show, using your claim, that L(M) = L.
- 3. [10 points] Show that your automaton is minimal by showing that no DFA N can exist such that L(N) = L and N has fewer states than M.

Question 5. [15 points] Provide non-deterministic finite automata accepting the following languages over the alphabet $\Sigma = \{a, b\}$. Note: For $w \in \Sigma^*, \sigma \in \Sigma$, we use $n_{\sigma}(w)$ to mean the number of letters σ in w.

- 1. [5 points] $L_1 = \{ w \in \Sigma^* : w \text{ contains the substring } ababa \}$
- 2. [5 points] $L_2 = \{ w \in \Sigma^* : n_a(w) \mod 2 = 1 \text{ or } n_b(w) \mod 3 = 2 \}$
- 3. [5 points] $L_3 = \{ w \in \Sigma^* : w \text{ starts and ends with the same letter} \}$

A proof of correctness is not required. No points will be awarded for overly complicated automata. In other words, you *must use non-determinism*.