Comp 330 - Lecture 16 - Oct 26th

Æ In <u>NPDAS</u>, NPDA can have choices in its transition function => NPDA guessed & verifies. DPDA are not equivalent in comp. power Æ deterministic to NPDAS Ex Consider the following NPDA which accepta L= fatbt: n + 12% Input: aa bb [] Pop nothing purch from U U U on X E > X m U b, X > E <u>ε,ε,ξ</u> 91 μορ χ'ε βοη ακιμ b. B the stack & infinite size? push a's Un bounded ! If the stack was bounded, then you Transitions are labelled would. Love on NFA:E o, A > J y what letter what you pue you read you pop you pue Y= BCD ا م you push

$$(P) \xrightarrow{a, k \Rightarrow BCD} => (k) \xrightarrow{s} \xrightarrow{s} \xrightarrow{s}$$

Instantaneous configurations

 $TC_1=(p, ay, AB$) | \frac{1}{P} TC_2=(q, y, JB$)$

What is the start IC of a PDA?

$$(5, \underline{w}, \underline{3})$$

input along
Acceptonce config:
 (f, E, α)
 $EF ET^*$

 \mathbb{P} \mathcal{P} $(\mathbb{P}^{4}, \mathbb{N})$ next-one instant. config relation).

Given a PDA P, $p,q \in Q$, $a \in \Sigma_{\varepsilon}$, $\alpha \in \Gamma_{\varepsilon}$, $\gamma \in \Gamma^{*}$

 $\mathcal{F}(q, y) \in \mathcal{F}(p, a, \alpha) \quad \text{then} \quad \forall y \in \mathbb{Z}^*, B \in \mathbb{T}^*$ $(p, ay, \alpha \beta) \quad \stackrel{4}{\vdash_{P}} (q, y, \beta \beta)$

by P.
Def Given a PDA P, the language
accepted by P is

$$L(P) = \{ w \in \mathbb{Z}^{+} : \exists f \in F, f \in \Gamma^{+} \in \{S, W\} \}$$

(S, w, \$) $\stackrel{\mu}{\leftarrow} \{J, E, W\} \}$
don't care
what is on
start at the
isot at the
isot at the
isot a CDA with the
following meetinctions on $\int G = \{S, X \in T\} \in I\}$
 $1 = \{J, G(P, a, X)\} \le 1$
 $2 = \{J, G(P, a, X)\} \le 1$
 $3 = \{J, G(P, a, X)\} = \{$

DPDA are thrictly less expressive tran NPDAs e.g. $L = \{ww^2 : w \in \Sigma^* \}$

Exercise Make a DPDA which accepts forb": nEWf

Then
$$\Sigma \neq \varphi$$
, $L_{NPDA} = \{L \subseteq \Sigma^{\star} : \exists NPDA P \text{ st.} \\ L(P) = L \}$
Then $L_{NPDA} = L_{CFL}$.

