Comp 330 - Lec 17 - Get 31st

IE: Acchiappane forfalle To catch butterflies To waste time

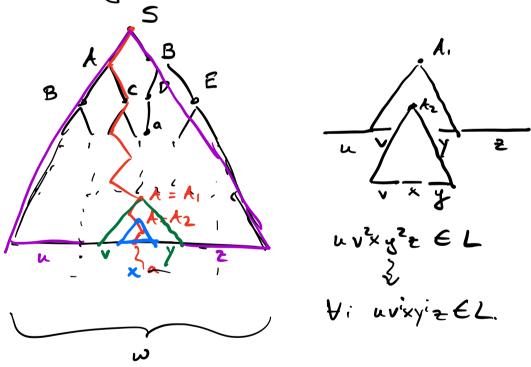
Languages which are not CF

Automata Theory:

Hodel of modern lay computer.

a b a www.

whowwded CF REG. & D ?


LIFO

of memory $a^{b}c^{c} \rightarrow a^{3}b^{3}c^{3}$ PDA which recognized $\frac{1}{2} \times \frac{1}{2} \times$

PDA has fergotten The # a's & b's

Punping lemma for CFLs

If L is an infinite CFL than I a CFG G in CNF st. L(6) = L-1Eg. Since Lis infinite & G is in CNF, for a sufficiently long string wEL, The passe Tree with yield w will look like:

Lemma (PT) Let 6= (V,5,T,P) be a CFG in LNF, TG,W be a parse tree of 6 with yield w and n E N, n>1. To the depth of $T_{6,w}$ is a then $|w| \leq 2^{n-1}$.

Pf By strong induction on n. Post leter.

Lemma (PL for CFL) Z+Ø, LCZ*

if Lis CF Then

I pE W, p>0

Y w EL, lwl>p

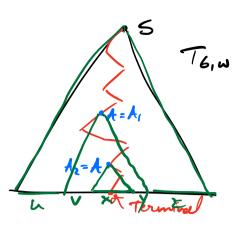
I u,v,x,y,z E Z*.

w= uvxyz,

lvyl>1,

lvxyl & p

Y i E/D, wi = uvixyiz EL.


Pf, Suppose L is an infinite CFL. Consider G as a CFG in CNF s.t. Setup $L(6) = L - \frac{1}{2} \frac{1}{5} \frac{1}{5}$.

Let K = 1VI (# of variables of G)

Set $p = 2^K$, pick $w \in L$ $1wI \gg p = 2^K$.

Let $T_{6,w}$ be a parse tree of 6 with yield w. By the PT lemma, the depth of $T_{6,w}$ must be of length at lost t+1.

Consider a longest path from the root 5 To a leaf of T6, w. The length of this path will be at least K+1.

: It will contain at (east (K+1)+1 nodes k+2.

I vxy $1 \le p$ because the superated variable would have occurred by the $n+2^{nd}$ hocle At most the ponse the rooted at A, would have depth K+1. By PT lemma, $1vxy 1 \le 2^{(K+1)-1} = p$

 \mathcal{J}

By copying A onto . 12 i times,

create a new valid powe true of 6

with yield wi= uvixyiz EL. Technically
it's i-1

times

Liny PL to show Lie not CF

Contra-Contra-Constions de not hold tren
Lis not CF.

Take contraposition:

If $Y p \in \mathbb{N}$, p > 0If $W \in L$, $L \in \mathbb{N}$, P > 0If $W \in L$, $L \in \mathbb{N}$, $L \in \mathbb{$

Ex Prove L= jabanca: nEINj is not CF.

V: Epponent picts pEW, 9>0

Care 2/3: Similar argument as Care 1

$$w = \underbrace{a \cdot \cdots \cdot a \cdot a \cdot b \cdot b \cdot b \cdot b \cdot c \cdot \cdots \cdot c \cdot c}_{\text{Care } 4}$$

$$\underbrace{Care 4}_{\text{Care } 5}$$

$$\underbrace{V \times V}_{\text{Care } 5}$$

$$\underbrace{V \times V}_{\text{Care } 6}$$

$$\underbrace{V \times V}_{\text{Ivxyl} > p}$$

Cone 4:
$$V = a^{Fi}$$
 $y = b^{F2}$ $2 \le K_1 + K_2 \le p$
 $k_1, K_2 \ge 1$

 $boldsymbol{w} = a^p b^p a^p b^p$

@: What if 121=1?

Ex Is L= 1 an2: n EN; is CF?

No! $w = a^{p^2}$ -> Argument would be exactly as the one for REG

Then If L \(\left\) a \(\frac{1}{2} \) If \(L \) is not CF.

I Lis CF then Lis REG. Exercise: Spiritual growth.

Closure properties of CFL - take 2

Ex Li= } anbncm: n,me Ws

L2 = } a ~ b ~ c ~ : n, ~ t N }

L, & Lz are CF. Please check!

=> CFLS are not closed under the A.

CFLs are closed under the REG N

Jun [# D, L C Z*, R C E*

Then

LAR 14 CF.

PBA M s.t. L(P)=R PDA P s.t. L(P)=L

Greate a PDA $P' = (Q', \Sigma, \Gamma, S', S', Z, \Gamma')$ $Q' := QP \times QM$ $\Sigma := \Sigma$ $\Gamma' := \Gamma P$ S' := (SP, SM) Z := ZP $F' := FP \times FM$ $Q' \times \Sigma \times \Gamma \rightarrow Q' \times \Gamma^*$ $S'((P, q), \sigma, A) = ((SP(P, \sigma, A) \Sigma \Pi, SM(P, \sigma)), SM(P, \sigma))$

QP QH

S(P, o, A) [2]

Product onstruction.

Who cones?

Ex Show that CFL are closed under the complement.

L= fanbrer: n+m OR m+ Kf

Lis CF. Check why. 4 branches

 $\frac{L \cap L(a^*b^*c^*)}{A} = \frac{1}{a^nb^nc^n} : n \in \mathbb{N}_{\frac{1}{2}}$ $a^nb^nc^n bbaacca-a \quad \text{CF}$

CFL une not closed under the complement.

Remark

L= 1 ww: w \(\) 20.53 \(\) > NOTCF

\[\) is CF \(\) Design \(\alpha \) PDM

\(\Rightarrow \) VALCOMPs.