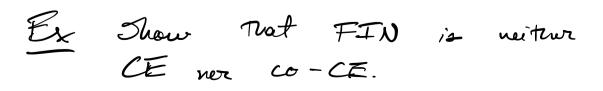

aba could not be enumerated abb could be enumerated multiple times

$$\begin{array}{c} \mathcal{D}_{f} \quad \mathcal{E}_{f} \neq \phi, \ \mathcal{L} \subseteq \mathcal{E}^{*}, \ \mathcal{L} \quad is \quad computably \\ enumerable (CE) \quad i_{f} \quad \exists \quad enumerator \quad E \\ s.t. \quad \mathcal{L}(E) = \mathcal{L}. \end{array}$$

Then Z#Ø, LGZ* Lis CE <-> Lis Turing recognizable

L(M) = L

enumerate!


3 🗲

$$P_{f}$$
 $\Xi \neq \phi$, $L \subseteq \Xi^{*}$, L is co-CE if
 \overline{L} is CE.

This shows that EMPTY is co-CE. Could EMPTY also be CE? No! Because EMPTY is undecidable. $\frac{1}{2}$ (Post) $\Xi \neq \phi$, $L \subseteq \Xi^{\dagger}$ Lis decidable <=> Lis CE & CO-CE.

Pf => Bey definition CE => I enum Exfor L
Lis co·CE=> L is CE => I enum Ez for ٤Ĩ E, > w3 ... EL · w E L E2 * 4, nz μι E, & E, (ຟ) should be dovefailed Л Implication Refine understability hierarchy

Bounded computation: Lese the time step at which the welfed on x as the bound to the length of the strings accepted by N.

ANS(
$$T_{HP}$$
) = $N \Rightarrow M$ loopt on x
 $\Rightarrow Regundless of w, N accepts
 $\Rightarrow L(N) = \Sigma^{*}$
 $\Rightarrow L(N) = \Sigma^{*}$
 $\Rightarrow ANS(T_{FEN}) = N$
AUS(T_{HP}) = $Y \Rightarrow M$ welts on x
 $\Rightarrow At$ some stime step y
 $N accepts$ M halts on x
 W
 $N accepts M halts on x
 W
 M halts on x
 M
 M halts on x
 M halts o$$