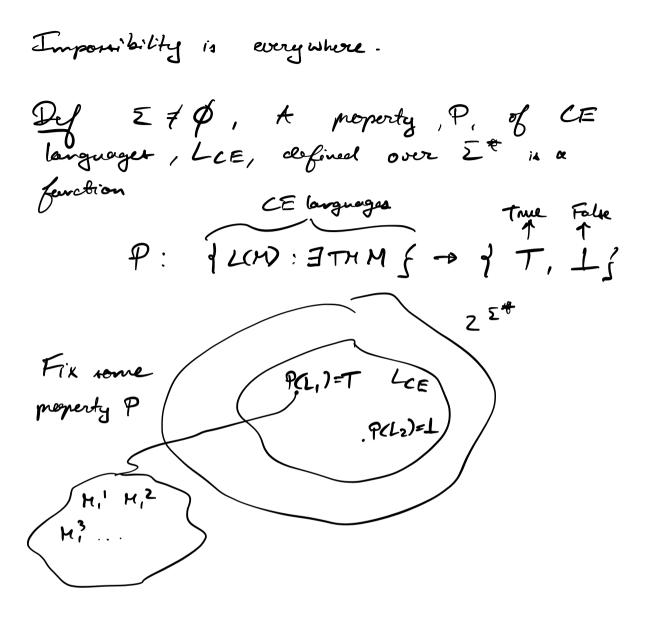


At this point we've seen many underdable problems where the problem is about some momenty of LM) ALL > L(M) = Z + it all ;talf REG → LCH7 = REG > L(H) = \$ EAPTY . FIN ILONI < p \rightarrow Not L(M) S Z* the there any interesting decision problems about noputies of CE languages which are devidance? No! Undevidability is The sule!



We can re-wite many of The DPS we thowad were undecidable by designing a corresponding property of CE languages.

$$\frac{E_{\mathcal{E}}}{P_{\text{EMPTY}}(L)} = \begin{pmatrix} \mathcal{L} \subseteq \mathcal{Z}^{*}, \ \mathcal{L} \stackrel{\text{is } CE}{\mathcal{L}} \end{pmatrix} \mathcal{T} \quad \begin{array}{c} \mathcal{L} \in \mathcal{L} \\ \mathcal{L} = \mathcal{L} \\ \mathcal{L} = \mathcal{L} \end{pmatrix} \mathcal{L} = \begin{pmatrix} \mathcal{L} \in \mathcal{L} \\ \mathcal{L} \end{pmatrix} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \end{pmatrix}$$

Given nome TH M $P_{330}(L(M)) = \int T i \int M accepts$ $\int J = \int J = \int J = \int J = \int J = J = J$ $\underline{\checkmark}$

$$\mathcal{A}_{330}$$
 is a properly of CE language.
 $\mathcal{M}_{1}, \mathcal{M}_{2}$ s.t. $\mathcal{L}(\mathcal{M}_{1}) = \mathcal{L}(\mathcal{M}_{2})$
 $w.\tau.s. \mathcal{P}(\mathcal{L}(\mathcal{M}_{1})) = \mathcal{T}$ (=>
 $\mathcal{P}(\mathcal{L}(\mathcal{M}_{1})) = \mathcal{T}$
(=> $\mathcal{M}_{1}, accepta \ O^{330}$
 $\mathcal{L} => O^{330} \in \mathcal{L}(\mathcal{M}_{1})$
 $\mathcal{L} => O^{350} \in \mathcal{L}(\mathcal{M}_{2})$
 $\mathcal{L} => \mathcal{M}_{2} accepta \ \mathcal{B}^{330}$
 $\mathcal{L} => \mathcal{P}(\mathcal{L}(\mathcal{M}_{2})) = \mathcal{T}$

Ex Given a TH M

$$P'_{330}(LOH) = \begin{cases} T & i \notin H \text{ regrets } O^{330} \\ L & oftwardener$$

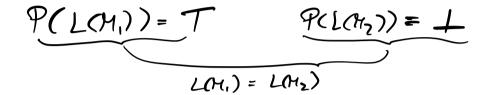
 $P'_{330} & i & not a property of CE larguages$
 $H_1 := On input w$

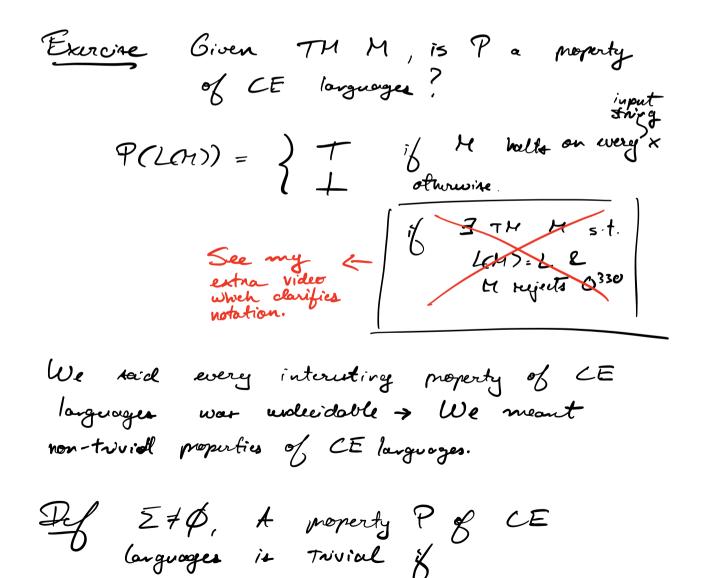
$$H_1 := On input w$$

 $I. \int w = O^{330}, typects L(H_1)$
 $2. otherwise, accepts = \Xi^* - 10^{330}$

$$H_{2} := G_{n} \quad input w$$

$$I. \quad I_{p} w = 0^{320}, \quad loop \qquad L(M_{2}) = \overline{2}^{*} - \frac{1}{30} \int_{1}^{330} \int_{1}^{30$$





Pf Let P be some non-twivial property
of CE languages.
Assume that
$$P(\phi) = \bot$$
 WLOG because
if $P(\phi) = T$ then the following arguments
would be symmetric. (Exercise: Check!)

Since P is non-trivial $\exists L \subseteq \Xi^{*}$ s.t. L is $C \equiv 4 P(L) = T$.

Since
$$L$$
 is CE , $\exists a$ TH K which
accepte L i.e. $L(K) = L$. $P(L(K)) = T$
We will show that
 $L \neq P \leq m$ Lp
 $Lp = \{2N\} : N$ is a tH 8 $P(L(N)) = T_{j}^{2}$
1. Convert $T + p = 2H, x > t_{T}$
 $T_{Lp} = \langle N \rangle$
2. Show that H halts an $x \geq s$
 $P(L(N)) = T$.
H, x inputs K constant
 $N := Gu$ input W Assume that
1. Sove w to tape 1 N has 2 tapes
2. Lood x anto tape 2 $(:) \Leftrightarrow \cdot$
3. Run H on x on tape 2 $(:) \Leftrightarrow \cdot$
4. T_{T} H halts on x , then sum K
on w on tape 1.
5. T_{K} is accepte w then accept
 M halts on $x| = K$ seems an avery w
 $T_{HP} \Rightarrow K$ accepte w $c=s$
 N accepte w

$$\Rightarrow L(k) = L(N) = L$$

$$\Rightarrow P(L) \neq T = P(L(N)) / T_{LP}$$