Limitation of mapping reductions

Recall Mapping/many-to-one veductions P , Q DPs P sm Q

 \rightarrow If you can solve Q , then you can solve P.

Two steps:

(1) Convert I_{ρ} to I_{α} in a computable manner then feed Ia to the Q -solver to create a P -solver.

The answer of the Q -solver is the answer of the P -solver

 (2) Proof of correctness for the P-solver:

ANS $(I_P) = Ye_3 \Leftrightarrow$ ANS $(I_Q) = Ye_5$.

Theorem $P \leq_m Q$.

Example Is there a mapping veduction $s.t.$ $HP \leq m$ HP ?

 $\frac{5}{10}$ No. $\frac{1}{10^{10}}$ S_M HP But then the intuition of "at least as difficult" breaks down Solution Turing Reduction

Turing Reductions

 $P. Q. P \leq T Q.$

- 11) Convert Ip to Ia and use Q -solver = Oracle for Q in any computable ways (e.g., use the Q-solver 10 times, flip answers, ...) to create a P-solver.
- (2) ANS (I_p) = Yes \Rightarrow P-solver returns Yes. ANS $(Ia) = N_0 \Rightarrow P$ - Solver veturns No. This is I_P

Example show IP HP 51 IF solver Oracle TMwith Oracle for HP Yes s Proof of correctness for FP solver ANS IEP Yes M loops on HPsolversays No Dj ^p ^X Answer getsflipped to Yes HT Solver returns Yes Same argument for ANS IFP No So FP ET HP Def Ʃ DP A La Z an oracle TM MA is ^a TM which can query in any computable manner an oracle for A A solver Given 0A decides ^e La in finite time Ex Given DP A MA decides A in ^I step

 $M^A :=$ On input w

Query 0^A and return its answer.

<u>Ex</u>: let DP ϕ be the decision problem with answer always no. L $\phi = \phi$.

- Given some TM M, ovacle TM M^{ϕ} is equivalent to M.
- Def Given DPs P, Q, we say that P Turing reduces to Q , $P \leq_T Q$, if $\exists M^Q$ that decides P (M^Q halts on every input and gives covrect Yes/No answer). P is decidable relative to Q .

Theorem If $A \leq_{T} B$ and B is decidable, then A is decidable. $Proof: A \leq_T B$

Def DPs A , B , A is Turing equivalent to B , $A \equiv_T B$, if $A \leq_1 B$ and $B \leq_1 A$. \rightarrow A and B are at the same level of possibility / impossibility.

Note: \equiv_1 is an equiv. relation.

Def Given DP A, an equiv. class of A for ϵ_T is called a Turing degree. deg $(A) = \{ B : A \equiv_{\tau} B \}$ Partial order on Turing degrees: deg (A) \leq deg (B) \iff $A \leq_{\tau} B$. deg (A) < deg (B) \iff $A \leq_{T} B$ and $B \leq_{T} A$.

```
Def Given DP A, jump (A), A', is the DP s.t.
```
 $L_{A'} = 1 \lt M^{A} \ltimes \gt)$: M^{A} is an oracle TM, M^{A} halts on x }.

 $A = \phi$ $A' = \phi' = HP$
Theorem deg (A) < deg (A') . P_{mod} : Omit. D

Problem Hierarchy

This partial order creates a chain of strictly "more impossible" classes of problems.

$$
\begin{array}{|c|c|c|c|c|}\n\hline\n\text{deg}(\phi) & & & \\
\hline\n\text{ideidable problems} & & & \\
\hline\n\end{array}
$$

Exercise: Show that any pair of decidable problems are Turing equiv.

Any CE problem has degree at most 0', but there are non-CE problems with degree at most 0' as well so $0'$!= ${CE Probs}$.