Limitation of mapping reductions

Recall Mapping/many-to-one reductions P, Q DPs. P =m Q

→ If you can solve Q, then you can solve P.

Two steps:

(1) Convert Ip to Ia in a computable manner then feed Ia to the Q-solver to create a P-solver.

The answer of the Q-solver is the answer of the P-solver.

(2) Proof of correctness for the P-solver:

ANS(Ip) = Yes (=> ANS(IQ) = Yes.

Theorem PEmQ.

\cdot Q is decidable \Rightarrow P is decidable	P is undecidable => Q is undecidable
• Q is $CE \Rightarrow P$ is CE .	P is not CE ⇒ Q is not CE.
· Q is ∞-CE ⇒ P is ∞-CE	P is not ω -CE \Rightarrow Q is not ∞ -CE.

Example Is there a mapping reduction s.t. HP <m HP ?

<u>Sol</u> No <u>HP</u> in <u>HP</u>. But then the intuition of "at least as difficult" CO-CE, not CE. not CE. not co-CE. breaks down Solution: Tuving Reduction.

Tuving Reductions

P, Q, PETQ.

- (1) Convert Ip to IQ and use Q-solver = Oracle for Q in any computable ways (e.g., use the Q-solver 10 times, flip answers,...) to create a P-solver.
- (2) ANS(I_P) = Yes ⇒ P-solver returns Yes.
 ANS(I_Q) = No ⇒ P-solver returns No. This is I P

Example Show
$$\overline{HP} \leq_T HP$$
.
Sol
 $\overline{HP} \text{ soluer} = \text{Oracle TM with Oracle for HP}$
 $\overline{HP} \text{ soluer} = \overline{Oracle TM with Oracle for HP}$
 $\overline{HP} \xrightarrow{Finction} \xrightarrow{TM} \xrightarrow{HP} \xrightarrow{HP} \xrightarrow{Finct} No$
 $\overline{Proof} \text{ of convectness for HP-solver :}$
 $ANS(I_{\overline{HP}}) = Yes \Rightarrow M \text{ loops on } x \Rightarrow HP \text{ solver says No}$
 $Des M \text{ not half on } x^{\circ} \Rightarrow Answer gets -flipped to Yes$
 $pos M \text{ loop on } x^{\circ} \Rightarrow Answer gets -flipped to Yes$
 $pos M \text{ loop on } x^{\circ} \Rightarrow HP - Solver returns Yes$.
Same argument for $ANS(I_{\overline{HP}}) = No$.
So $\overline{HP} \leq_T HP$.
 $Det \Sigma \neq \Phi$, $DP A$, $LA \leq \Sigma^{\circ}$, an oracle TM M^A is a TM
which can query in any computable manner an oracle for $A (A - solver)$.
Given $x \in \Sigma^{\circ}$, O^{A} decides $x \in L_{A}$ in finite time.
 \overline{Ex} : Given DP A, M^A decides A in $\tilde{T} - step^{\circ}$.
 $M^A := On input w$

Query O^A and return its answer.

Ex: let DP ϕ be the decision problem with answer always no. L $\phi = \phi$.

- Given some TM M, oracle TM M^{ϕ} is equivalent to M. TM N + 0°
- Def Given DPs P, Q, we say that P Tuving reduces to Q, $P \leq_T Q$, if $\exists M^Q$ that decides P (M^Q halts on every input and gives correct Yes/No answer). P is decidable relative to Q.

Theorem If $A \leq_T B$ and B is decidable, then A is decidable. <u>Proof</u>: $A \leq_T B$.

Def DPs A, B, A is Turing equivalent to B, $A \equiv T B$, if $A \leq T B$ and $B \leq T A$. \rightarrow A and B are at the same (evel of possibility / impossibility.

Note: \equiv_T is an equiv. velation.

Def Given DP A, an equiv. class of A for \equiv_T is called a Turing degree. deg (A) = { B : A \equiv_T B } Partial order on Turing degrees: deg (A) < deg (B) \iff A \leq_T B deg (A) < deg (B) \iff A \leq_T B and B \equiv_T A

```
Def Given DP A, jump (A), A', is the DP s.t.
```

 $L_{A'} = \{ \langle M^A, x \rangle : M^A \text{ is an oracle TM}, M^A \text{ halts on } x \}.$

 $A = \phi \qquad A' = \phi' = HP$ Theorem deg(A) < deg(A'). $\underline{Pwof}: \text{ Omit.}$

Problem Hierarchy

This partial order creates a chain of strictly "more impossible" classes of problems.

Exercise: Show that any pair of decidable problems are Turing equiv.

Any CE problem has degree at most 0', but there are non-CE problems with degree at most 0' as well so 0' != {CE Probs}.