Comp 330 - Theory of Computation

Lecture 3 - Fall 2023

Claude Crépeau, Cesare Spinoso-Di Piano September 7th 2023

McGill University - School of Computer Science

- 1. [Intro to Automata Theory](#page-2-0)
- 2. [Deterministic Finite Automata](#page-5-0)

[Intro to Automata Theory](#page-2-0)

Automaton: Theoretical computing machine

• From Greek, *automatos* which means "acting of itself".

A bit of history

- 1936/1937: Alan Turing introduces the "a-machines" ("a" for automatic) and shows that "Entscheindungsproblem" is undecidable.
- 1942: Warren McCulloh (MD) and Walter Pitts (Logician) introduce the *neural network* to model the brain in their paper "A Logical Calculus of the Ideas Immanent in Nervous Activity".
- 1951: John von Neumann publishes "The General and Logical Theory of Automata".
- 1967: Marvin Minsky publishes the book "Finite and Infinite Machines".

Finite Deterministic

[Deterministic Finite Automata](#page-5-0)

Deterministic Finite Automat < on $\sum \rightarrow$ alphabet (Informal) A DFA, M, is a Computational model which, given some input $x \in \stackrel{\text{{\small 1}}}{\text{{\small 2}}}$ either accepts or rajects x. DFA are Known as language acceptors / recognizers.

Formal definition of DFA
 $\begin{array}{rcl} \mathcal{P} & \mathcal{P$ $Q, \Sigma, \mathcal{L}, S, \mathfrak{s}$ $Q:$ set of states I input alphabet f : transition function $f: G \times \Sigma \rightarrow Q$ $\bigoplus^{\alpha} \bigoplus^{\alpha}$ $\langle = \rangle$ $\bigoplus^{\alpha} (q, \alpha) = p$ s_o : start state, $s_o \in Q$ F : set of accept states, $F \subseteq G$ M $\frac{b}{a}$ $Q = \{q_0, q_1, q_2\}$ $2 - 100p$ $g^{(q_0, \alpha) = q_i}$ \leq_{∂} = q_{\circ} $F = \{90\}$ Ingeneral given DFA ^M \overline{a} Formally: Extended transition function S^* f^* $\mathbb{Q} \times \Sigma^*$ $\rightarrow \mathbb{Q}$ $\int^{\clubsuit} (p, ab\alpha) = 5$

Given a string
$$
x \in \Sigma^*
$$
 Δ **a** DFA H :
We say H accept $x \iff$
 $\int^*(\epsilon_{0}, x) \in F$

Proof Technique How do we prove twat a larguage L is regular?

I Construct ^a DFA M sit LCM L ² Prove correctness of ^M Fx EE ELM ÉL Ey Prove that language Cabs ⁿ Of is regular s M I 92 2 Prove that LCM L ¹ Make ^a claim about ft and prove that claim ² Show using that txt ZIKE LCM ² ⁵ KEL What is each slate doing PCM ^w if forgo ^w go then ^w cab no ANDif ⁸ ⁹⁰ ^W ^q then ^w cab ^a in ⁰ AND if forgo ^W ^q then ^W Cab and wyab ^a Proof By induction on Iw so go ^M is the ^M G E f so ^F machine we W.TS Given DEAM KREE EEÉc EEL Directly Pick some EE Eun

 $\zeta^{\mathcal{A}}(q_o, \times) \in F$ \Rightarrow => $\int_{0}^{x} f(q, x) \in \{q_0\}$
=> $\int_{0}^{x} f(q, x) = q_0$
=> $x = (ab)^n$, $n \ge 0$ by $P(H, \omega)$
=> $x \in L$ |
|L=}(ab)ⁿ: n>0} ϵ $(x \in L \Rightarrow x \in L(m) , x \notin L(M) \Rightarrow x \notin L)$ $x\in\Sigma^*$ \times $\notin LM$) \Rightarrow $\xi^2(q_0,x) \notin F$ \Rightarrow $\begin{cases} 8 \leq q_0, k > 0 \ \end{cases}$ \Rightarrow $\begin{cases} 8 \leq q_0, k > 0 \ \end{cases}$ \Rightarrow $\begin{cases} 8 \leq q_0, k > 0 \ \end{cases}$ \Rightarrow \Rightarrow $\begin{cases} 8 \leq q_0, k > 0 \ \end{cases}$ \Rightarrow x = (ab) "a or [x 7 (ab)" /and) by $P(H,\omega)$ $x \neq$ Cab) 27 $\Rightarrow x \notin L$ 45 Jhours $x \notin LM$ => $x \notin L$ Frond of PM, w) (We stipped tuit deving lecture) I will post this in a separate handout under Lecture 3.