COMP 330 Fall 2023 Supplementary Note Lecture 5

Cesare Spinoso-Di Piano

Last updated: September 24, 2023

This supplementary note formally¹ proves some of the facts/theorems from Lecture 5.

1 DFA and NFA

We begin this note by recalling the formal definitions of DFA and NFA.

Definition 1.1 (Deterministic Finite Automaton). A deterministic finite automaton (DFA) M is a 5-tuple $M = (Q, \Sigma, \delta, s_0, F)$ where

- Q is the finite set of states
- Σ is the input alphabet
- δ is the transition function $\delta: Q \times \Sigma \to Q$
- $s_0 \in Q$ is the (unique) start state²
- $F \subseteq Q$ is the set of accept $(\text{final})^3$ states

Recall that the "workhorse" of the DFA is its transition function and, in particular, its extended transition function δ^* which I defined recursively (see Lecture 3 notes).

Definition 1.2 (Non-deterministic Finite Automaton). A non-deterministic finite automaton (NFA) N is a 5-tuple $N = (Q, \Sigma, \Delta, S_0, F)$ where

- Q is the finite set of states
- Σ is the input alphabet
- Δ is the transition function $\Delta: Q \times \Sigma \to 2^Q$

 1_A few students have been complaining about the "lack of rigour" in my proofs. Just because a proof is simple, doesn't mean it's not rigorous!

²Some books use q_0 as the start state. I do too sometimes. Regardless, I will be consistent in using the 4th element of the tuple as the start state.

 3 Some books call F the set of accept states. Others say the set of final states. I prefer the term "accept" since it tells you exactly what F is for. Out of habit, I sometimes say the set of final states.

- $S_0 \subseteq Q$ is the set of start states
- $F \subseteq Q$ is the set of accept (final) states

Much like the DFA, the NFA's "workhorse" is its transition function and, in particular, its extended transition function Δ^* . Recall from Lecture 5 that Δ^* takes as input parameters a set of states and a string. This first input type is necessary to accommodate for the fact that an NFA has a *set of* start states.

After introducing Δ^* , I presented the following two facts without proofs.

Fact. Given an NFA $N = (Q, \Sigma, \Delta, S_0, F)$, $A \subseteq Q$, $B \subseteq Q$, $x, y \in \Sigma^*$, we have that

$$
1. \ \Delta^*(A, xy) = \Delta^*(\Delta^*(A, x), y)
$$

2. $\Delta^*(A \cup B, x) = \Delta^*(A, x) \cup \Delta^*(B, x)$

Proof. We prove Fact 1 here by induction on the length of y. Base case: Suppose $|y| = 0$ then $y = \varepsilon$. Then,

$$
\Delta^*(A, x \cdot y) = \Delta^*(A, x \cdot \varepsilon)
$$

$$
= \Delta^*(A, x)
$$

and

$$
\Delta^*(\Delta^*(A, x), y) = \Delta^*(\Delta^*(A, x), \varepsilon)
$$

=
$$
\Delta^*(A, x)
$$

This proves the base case.

Inductive hypothesis: We assume the statement is true for every $y \in \Sigma^*$, $|y| = n$ for some $n \in \mathbb{N}$. Inductive step: We must show the statement for $y \in \Sigma^*$, $|y| = n + 1$. We rewrite y as $w\sigma$ where $w \in \Sigma^*, \sigma \in \Sigma$. Then

$$
\Delta^*(A, xy) = \Delta^*(A, x \cdot (w\sigma))
$$

\n
$$
= \Delta^*(A, (x \cdot w)\sigma)
$$

\n
$$
= \bigcup_{q \in \Delta^*(A, xw)} \Delta(q, \sigma)
$$

\n
$$
= \bigcup_{q \in \Delta^*(\Delta^*(A, x), w)} \Delta(q, \sigma)
$$

\n
$$
= \Delta^*(\Delta^*(A, x), w\sigma)
$$
 by the definition of Δ^* - let $B = \Delta^*(A, x)$ to convince yourself
\n
$$
= \Delta^*(\Delta^*(A, x), y)
$$

This completes the proof.

2 Equivalence of DFA and NFA

We are now ready to prove the first theorem which I stated during Lecture 5.

Theorem 1. Given some alphabet Σ , the family of languages accepted by DFA, $L_{DFA} = \{L(M) :$ M is a DFA}, is exactly the same as the family of languages accepted by NFA, $L_{NFA} = \{L(N) :$ N is an NFA}.

Proof. We prove this set equality by double inclusion.

 $L_{\text{DFA}} \subseteq L_{\text{NFA}}$. This statement says that any language accepted by some DFA $M = (Q, \Sigma, \delta, s_0, F)$, $L(M)$, belongs to L_{NFA} . To show this is true, we must show that there is some NFA N such that $L(M) = L(N)$. We construct $N = (Q', \Sigma, \Delta, S_0, F')$ explicitly as follows

$$
Q' := Q
$$

\n
$$
S_0 := \{s_0\}
$$

\n
$$
F' := F
$$

\nFor $q \in Q, \sigma \in \Sigma, \Delta(q, \sigma) := \{\delta(q, \sigma)\}\$

That is, N looks exactly like M except that we've changed the types of some of the elements of the tuple such that they respect the definition of NFA. We must show that $L(M) = L(N)$. To do so (and this will be a common procedure throughout this note), we must first prove some relation between δ^* and Δ^* . We state this relation in the following claim.

Claim. Given a DFA $M = (Q, \Sigma, \delta, s_0, F)$ and the NFA $N = (Q', \Sigma, \Delta, S_0, F')$ which has been constructed as a function of M, we have that $\forall w \in \Sigma^*, q \in Q, \Delta^*(\{q\}, w) = \{\delta^*(q, w)\}.$

Proof. I omit this proof. It is a straightforward proof by induction. Please come to OH if you'd like to discuss it.

We are now ready to show $L(M) = L(N)$. Consider some arbitrary $w \in \Sigma^*$, then

$$
w \in L(M) \iff \delta^*(s_0, w) \in F
$$

\n
$$
\iff \{\delta^*(s_0, w)\} \cap F \neq \emptyset
$$

\n
$$
\iff \Delta^*(\{s_0\}, w) \cap F \neq \emptyset
$$

\n
$$
\iff \Delta^*(S_0, w) \cap F' \neq \emptyset
$$

\n
$$
\iff w \in L(N)
$$

 $L_{\text{DFA}} \subseteq L_{\text{NFA}}$. To prove this direction, given any NFA $N = (Q, \Sigma, \Delta, S_0, F)$, we must show that there exists an equivalent DFA $M = (Q', \Sigma, \delta, s_0, F')$ such that $L(M) = L(N)$. We reproduce the explicit construction I showed during Lecture 5 (I drop the subscripts for compactness).

$$
Q' := 2^Q
$$

$$
s_0 := S_0
$$

$$
F' := \{ B \subseteq Q : B \cap F \}
$$

 $\delta(B,\sigma) \coloneqq \bigcup_{q \in B} \Delta(q,\sigma)$, for $B \in Q'$ and $\sigma \in \Sigma$. Note that, by definition, the RHS is also equal to $\Delta^*(\overline{B}, \sigma)$. This will come up in the proof of the upcoming claim.

We must now prove that $L(M) = L(N)$. To do so, we first must establish a relation between δ^* and Δ^* . We state it in the claim below.

Claim. Given an NFA $N = (Q, \Sigma, \Delta, S_0, F)$ and the DFA $M = (Q', \Sigma, \delta, s_0, F')$ which has been constructed as a function of N, we have that $\forall w \in \Sigma^*, B \subseteq Q, \Delta^*(B, w) = \delta^*(B, w)$.

Study this equality carefully. In particular, do the data types make sense?

Proof. We prove this by induction on the length of w.

Base case: $|w|=0 \Rightarrow w=\varepsilon$. Then,

$$
\delta^*(B, w) = \delta^*(B, \varepsilon) = B = \Delta^*(B, \varepsilon) = \Delta^*(B, w)
$$

Inductive hypothesis: We assume that the statement is true for every $w \in \Sigma^*$ where $|w| = n$ for some $n \in \mathbb{N}$.

Inductive step: Suppose $w \in \Sigma^*$ and $|w| = n + 1$. Then $w = x\sigma$ for $x \in \Sigma^*, \sigma \in \Sigma$.

We are now ready to show $L(N) = L(M)$. Consider some arbitrary string $w \in \Sigma^*$, then

This completes the proof.

3 Equivalence of NFA and NFA+ ϵ

3.1 A brief recall and a comment about notation

Recall from Lecture 5 that NFA+ ϵ behave exactly like NFA except that they allow ϵ -transitions (pronounced "epsilon"-transitions). ϵ-transitions are transitions that allow an automaton to transition from one state to another without reading any letter from the input tape.

Note that, in order to be extremely explicit, I have used the symbol ϵ (in tex, \epsilon) to talk about "epsilon"-transitions rather than the symbol ε (in tex, **\varepsilon**) which I've reserved for the empty string. This difference in notation is because, strictly speaking, ε , the empty string, and ϵ , the symbol representing "epsilon"-transitions, are not the same. The former is a string and thus has data type "string". The latter is a special symbol used to label "epsilon"-transitions in automaton. I will be precise in this section and use ϵ and ε diligently, but, in general, I will abuse notation and use ε in all cases (e.g., Lecture 5 notes).

3.2 A formal definition of NFA+ ϵ

Definition 3.1 (NFA with ϵ -transitions). A non-deterministic finite automaton with ϵ **transitions (NFA**+ ϵ) N is a 6-tuple $N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$ where

- Q is the finite set of states
- Σ is the input alphabet and $\epsilon \notin \Sigma$
- ϵ is the special symbol representing "epsilon"-transitions
- Δ is the transition function $\Delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$
- $S_0 \subseteq Q$ is the set of start states
- $F \subseteq Q$ is the set of accept (final) states

To talk about string acceptance for NFA+ ϵ , we must create a way to formally talk about the states the NFA+ ϵ can reach "for free" using ϵ -transitions. Note that we cannot use the Δ^* extended transition function for vanilla NFA because we do not want to consider strings of the form $a\epsilon b$.

Definition 3.2 (ϵ -closure). Given an NFA+ ϵ , $N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$, a state $q \in Q$ and a set of states $A \subseteq Q$, we define the ϵ -closure⁴ for q and A as

 ϵ -closure $(q) = \{p \in Q : \exists \text{ a walk of } 0 \text{ or more } \epsilon\text{-transitions from } q \text{ to } p\}$

and

$$
\epsilon\text{-closure}(A) = \bigcup_{q \in A} \epsilon\text{-closure}(q)
$$

Note that, by definition $q \in \epsilon$ -closure (q) and $A \subseteq \epsilon$ -closure (A) . Next, to talk about string and language acceptance, we need to define $NFA+\epsilon$'s extended transition function.

Definition 3.3 (Δ_{ϵ}^{*}) . Let $N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$ be an NFA+ ϵ , and let $A \subseteq Q, x \in \Sigma^{*}, \sigma \in \Sigma$. The extended transition function for NFA+ $\epsilon \Delta_{\epsilon}^* : 2^Q \times \Sigma^* \to 2^Q$ (note that the string input does not allow ϵ) is defined as follows. For the base case, we have that

> Δ_{ϵ}^* note the difference between ϵ and ε

⁴This definition is tacitly assuming you are somewhat familiar with graph theory.

And, in the recursive (inductive) case, we have that 5

$$
\Delta_{\epsilon}^*(A, x\sigma) = \bigcup_{q \in \Delta_{\epsilon}^*(A, x)} \epsilon\text{-closure}(\Delta(q, \sigma))
$$

Note how similar this recursive definition is to the one for vanilla NFA. The only difference now is that *before* and *after* reading a letter, we expand the set of destination sets by checking which states we can reach *for free*. To get a feel for this definition, let's apply it (recursively) to the string $w = ab$ for some subset of states $A \subseteq Q$ and see if it matches the way I was presenting computations of NFA+ ϵ during the lecture

$$
\Delta_{\epsilon}^{*}(A, ab) = \bigcup_{q \in \Delta_{\epsilon}^{*}(A, a)} \epsilon\text{-closure}(\Delta(q, b))
$$

$$
= \bigcup_{q \in A'} \epsilon\text{-closure}(\Delta(q, b))
$$

Where $A' = \Delta_{\epsilon}^{*}(A, a)$ is

$$
\Delta_{\epsilon}^{*}(A, a) = \bigcup_{p \in \Delta^{*}(A, \varepsilon)} \epsilon\text{-closure}(\Delta(p, a))
$$

$$
= \bigcup_{p \in \epsilon\text{-closure}(A)} \epsilon\text{-closure}(\Delta(p, a))
$$

This exactly matches how we would run through all of the computations for an NFA+ ϵ given the string ab . Let's work through this sequence of recursive calls $bottom-up$, i.e., starting from the base case and working our way up to the original function call. This would look like the following

- 1. Check if there are any states we can reach for free from the states in A. Call this set of states A_1 $(A \subseteq A_1)$.
- 2. Read a from each of the states in A_1 . Call the set of destination states A_2 .
- 3. For each of the states in A_2 , check if there are any states that we can reach for free. Call this set of states A_3 $(A_2 \subseteq A_3)$.
- 4. Read b from each of the states in A_3 . Call the set of destination states A_4 .
- 5. For each of the states in A_4 , check if there are any states that we can reach for free. Call this set of states A_5 $(A_4 \subseteq A_5)$.

⁵There was a mistake in a previous version of this note where I defined the recursive case as $\Delta_{\epsilon}^{*}(A, x\sigma)$ = ϵ -closure($\Delta(\Delta_{\epsilon}^{*}(A,x),\sigma)$). What is the problem with this recursive case? Hint: Take a look at the data types. Thanks to the student who caught this!

6. $\Delta_{\epsilon}^{*}(A, ab) = A_5$

We note the following facts about Δ_{ϵ}^{*} which are analogous to the facts about Δ^{*} .

Fact. Given an $NFA+\epsilon$, $N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$, a subset $A \subseteq Q, B \subseteq Q$, strings $x, y \in \Sigma^*$, we have that

- 3. $\Delta_{\epsilon}^{*}(A, xy) = \Delta_{\epsilon}^{*}(\Delta_{\epsilon}^{*}(A, x), y)$
- 4. $\Delta_{\epsilon}^{*}(A \cup B, x) = \Delta_{\epsilon}^{*}(A, x) \cup \Delta_{\epsilon}^{*}(B, x)$

Proof. The proofs are by induction. I omit them. The proof of the first fact uses the property that ϵ -closure(ϵ -closure(A)) = ϵ -closure(A). Do you see why?

We are now able to formally define the notion of string and language acceptance for NFA+ ϵ .

Definition 3.4 (String acceptance). Given an NFA+ ϵ $N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$ and a string $w \in \Sigma^*$, we say that N accepts w if and only if $\Delta_{\epsilon}^{*}(S_0, w) \cap F \neq \emptyset$.

Definition 3.5 (Language acceptance). Given an NFA+ ϵ N = (Q, Σ , ϵ , Δ , S_0 , F), the language accepted by N is

$$
L(N) = \{w \in \Sigma^* : \Delta_{\epsilon}^*(S_0, w) \cap F \neq \emptyset\}
$$

3.3 Equivalence between NFA and NFA+ ϵ

We are (finally) ready to re-state the theorem I presented towards the end of Lecture $5⁶$.

Theorem 2. Given some alphabet Σ , the family of languages accepted by NFA, $L_{NFA} = \{L(N) :$ N is an NFA}, is exactly the same as the family of languages accepted by NFA+ ϵ , $L_{NFA+\epsilon}$ = ${L(N) : N \text{ is an } NFA + \epsilon}.$

Proof. We again must prove this theorem by double inclusion.

 $L_{NFA} \subseteq L_{NFA+\epsilon}$. As discussed during the lecture, this direction is easy because an NFA can be thought of as an NFA+ ϵ which does not have any ϵ -transitions. Thus, we could take an arbitrary NFA N and convert it to an NFA+ ϵ . In this case, $\forall q \in Q$, $A \subseteq Q$, we will have ϵ -closure $(q) = q$ and ϵ -closure(A) = A in which case $\Delta^*(A, w) = \Delta_{\epsilon}^*(A, w)$ is clearly true.

 $L_{NFA+\epsilon} \subseteq L_{NFA}$. Consider some arbitrary NFA+ $\epsilon N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$. We explicitly construct an NFA $N' = (Q', \Sigma', \Delta', S'_0, F')$ such that $L(N') = L(N)$. We construct N' explicitly as follows

 $Q' \coloneqq Q$

 $\Sigma' := \Sigma$. Note: This means *ε* is not part of N''s input alphabet, which is desired.

 $S'_0 := S_0$

 $F' \coloneqq F \cup \{s \in S_0 : \epsilon\text{-closure}(s) \cap F \neq \emptyset\}.$ We will see why this is necessary in a moment.

 $\Delta'(q, \sigma) \coloneqq \Delta_{\epsilon}^*(\{q\}, \sigma)$ for $q \in Q, \sigma \in \Sigma$

⁶Imagine if I had done all of this during the lecture!

Note how Δ' is defined. It is meant to account for any ϵ -transitions *before and after* reading the letter σ . For instance, suppose we have the following directed subgraph in N

Then in N', $\Delta'(1, a) = \Delta_{\epsilon}^{*}(\{1\}, a) = \{4, 6, 3, 5\}$. The only other tricky part about this conversion is the way we defined F' . The set of accept states of N' is the set of accept states of N along with any start states that can, for free, reach a final state. This is because, in vanilla NFA, the only way for the empty string to be accepted is for a start state to be a final state. Thus, if we have the following situation in N'

Then the state 1 will be an accept state in N.

We must now show that $L(N) = L(N')$. To do so, we need a relation between Δ'^* (which follows the definition of the extended transition function for vanilla NFA) and Δ_{ϵ}^* . We state it in the following claim.

Claim. Given an $NFA+\epsilon N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$ and the NFA $N' = (Q', \Sigma', \Delta', S'_0, F')$ which has been constructed as a function of N, we have that $\forall w \in \Sigma^*, |w| \geq 1, B \subseteq Q, \Delta'^*(B, w) = \Delta^*_\epsilon(B, w)$.

Note the lower bound on the length of w - the statement is in fact false if $|w| = 0$ by definition of Δ'^* and Δ_{ϵ}^* .

Proof. We prove this claim by induction on $|w|$.

Base case: $|w|=1 \Rightarrow w=\sigma, \sigma \in \Sigma$. Then,

$$
\Delta'^*(B,\sigma) = \bigcup_{q \in B} \Delta'(q,\sigma)
$$

=
$$
\bigcup_{q \in B} \Delta^*_{\epsilon}(\{q\},\sigma)
$$

=
$$
\Delta^*_{\epsilon}(B,\sigma)
$$
 Generalization of Fact 3

Inductive hypothesis: We assume that the statement is true for every $w \in \Sigma^*$ where $|w| = n$ for some $n \in \mathbb{N}, n \geq 1$.

Inductive step: Suppose $w \in \Sigma^*$ and $|w| = n + 1$. Then $w = x\sigma$ for $x \in \Sigma^*, \sigma \in \Sigma$.

$$
\Delta'^*(B, x\sigma) = \Delta'^*(\Delta'^*(B, x), \sigma)
$$

= $\Delta^*_\epsilon(\Delta^*_\epsilon(B, x), \sigma)$ by IH and the same argument as in the BC
= $\Delta^*_\epsilon(B, x\sigma)$ using Fact 4

We are now able to show $L(N) = L(N')$. Pick some arbitrary $w \in \Sigma^*$. If $w = \varepsilon$ then

$$
\varepsilon \in L(N) \iff
$$
 there is an ϵ walk of length 0 or more from some $s \in S_0$ to some $f \in F$ $\iff \exists s \in S_0$ such that $\epsilon\text{-closure}(s) \cap F \neq \emptyset$ $\iff S'_0 \cap F' \neq \emptyset$ $\iff \varepsilon \in L(N')$

Otherwise, if $w\neq\varepsilon$ then it has length greater or equal to 1. Then

$$
w \in L(N) \iff \Delta_{\epsilon}^{*}(S_0, w) \cap F \neq \emptyset
$$

$$
\iff \Delta'^{*}(S'_0, w) \cap F' \neq \emptyset
$$

$$
\iff w \in L(N')
$$

Done!

There is a much cleaner way of proving this result using homomorphisms. I leave that for another note.