COMP 330 Fall 2023 Supplementary Note Lecture 5

Cesare Spinoso-Di Piano

Last updated: September 24, 2023

This supplementary note formally¹ proves some of the facts/theorems from Lecture 5.

1 DFA and NFA

We begin this note by recalling the formal definitions of DFA and NFA.

Definition 1.1 (Deterministic Finite Automaton). A <u>deterministic</u> finite automaton (DFA) M is a 5-tuple $M = (Q, \Sigma, \delta, s_0, F)$ where

- Q is the finite set of states
- Σ is the input alphabet
- δ is the transition function $\delta: Q \times \Sigma \to Q$
- $s_0 \in Q$ is the (unique) start state²
- $F \subseteq Q$ is the set of accept (final)³ states

Recall that the "workhorse" of the DFA is its transition function and, in particular, its extended transition function δ^* which I defined recursively (see Lecture 3 notes).

Definition 1.2 (Non-deterministic Finite Automaton). A <u>non-deterministic</u> finite automaton (NFA) N is a 5-tuple $N = (Q, \Sigma, \Delta, S_0, F)$ where

- Q is the finite set of states
- Σ is the input alphabet
- Δ is the transition function $\Delta: Q \times \Sigma \to 2^Q$

 $^{^{1}}$ A few students have been complaining about the "lack of rigour" in my proofs. Just because a proof is simple, doesn't mean it's not rigorous!

²Some books use q_0 as the start state. I do too sometimes. Regardless, I will be consistent in using the 4th element of the tuple as the start state.

³Some books call F the set of accept states. Others say the set of final states. I prefer the term "accept" since it tells you exactly what F is for. Out of habit, I sometimes say the set of final states.

- $S_0 \subseteq Q$ is the set of start states
- $F \subseteq Q$ is the set of accept (final) states

Much like the DFA, the NFA's "workhorse" is its transition function and, in particular, its extended transition function Δ^* . Recall from Lecture 5 that Δ^* takes as input parameters a *set of states* and a string. This first input type is necessary to accommodate for the fact that an NFA has a *set of* start states.

After introducing Δ^* , I presented the following two facts without proofs.

Fact. Given an NFA $N = (Q, \Sigma, \Delta, S_0, F), A \subseteq Q, B \subseteq Q, x, y \in \Sigma^*$, we have that

- 1. $\Delta^*(A, xy) = \Delta^*(\Delta^*(A, x), y)$
- 2. $\Delta^*(A \cup B, x) = \Delta^*(A, x) \cup \Delta^*(B, x)$

Proof. We prove Fact 1 here by induction on the length of y. <u>Base case:</u> Suppose |y| = 0 then $y = \varepsilon$. Then,

$$\begin{split} \Delta^*(A,x\cdot y) &= \Delta^*(A,x\cdot \varepsilon) \\ &= \Delta^*(A,x) \end{split}$$

and

$$\Delta^*(\Delta^*(A, x), y) = \Delta^*(\Delta^*(A, x), \varepsilon)$$
$$= \Delta^*(A, x)$$

This proves the base case.

Inductive hypothesis: We assume the statement is true for every $y \in \Sigma^*$, |y| = n for some $n \in \mathbb{N}$. Inductive step: We must show the statement for $y \in \Sigma^*$, |y| = n + 1. We rewrite y as $w\sigma$ where $w \in \Sigma^*, \sigma \in \Sigma$. Then

$$\begin{split} \Delta^*(A, xy) &= \Delta^*(A, x \cdot (w\sigma)) \\ &= \Delta^*(A, (x \cdot w)\sigma) \\ &= \bigcup_{q \in \Delta^*(A, xw)} \Delta(q, \sigma) \\ &= \bigcup_{q \in \Delta^*(\Delta^*(A, x), w)} \Delta(q, \sigma) \\ &= \Delta^*(\Delta^*(A, x), w\sigma) \\ &= \Delta^*(\Delta^*(A, x), w\sigma) \end{split}$$
by the definition of Δ^* - let $B = \Delta^*(A, x)$ to convince yourself $= \Delta^*(\Delta^*(A, x), y)$

This completes the proof.

2 Equivalence of DFA and NFA

We are now ready to prove the first theorem which I stated during Lecture 5.

Theorem 1. Given some alphabet Σ , the family of languages accepted by DFA, $L_{DFA} = \{L(M) : M \text{ is a DFA}\}$, is exactly the same as the family of languages accepted by NFA, $L_{NFA} = \{L(N) : N \text{ is an NFA}\}$.

Proof. We prove this set equality by double inclusion.

 $L_{\text{DFA}} \subseteq L_{\text{NFA}}$. This statement says that any language accepted by some DFA $M = (Q, \Sigma, \delta, s_0, F)$, L(M), belongs to L_{NFA} . To show this is true, we must show that there is some NFA N such that L(M) = L(N). We construct $N = (Q', \Sigma, \Delta, S_0, F')$ explicitly as follows

$$\begin{array}{l} Q' \coloneqq Q\\ S_0 \coloneqq \{s_0\}\\ F' \coloneqq F\\ \text{For } q \in Q, \sigma \in \Sigma, \, \Delta(q, \sigma) \coloneqq \{\delta(q, \sigma)\} \end{array}$$

That is, N looks exactly like M except that we've changed the types of some of the elements of the tuple such that they respect the definition of NFA. We must show that L(M) = L(N). To do so (and this will be a common procedure throughout this note), we must first prove some relation between δ^* and Δ^* . We state this relation in the following claim.

Claim. Given a DFA $M = (Q, \Sigma, \delta, s_0, F)$ and the NFA $N = (Q', \Sigma, \Delta, S_0, F')$ which has been constructed as a function of M, we have that $\forall w \in \Sigma^*, q \in Q, \Delta^*(\{q\}, w) = \{\delta^*(q, w)\}.$

Proof. I omit this proof. It is a straightforward proof by induction. Please come to OH if you'd like to discuss it.

We are now ready to show L(M) = L(N). Consider some arbitrary $w \in \Sigma^*$, then

$$w \in L(M) \iff \delta^*(s_0, w) \in F$$
$$\iff \{\delta^*(s_0, w)\} \cap F \neq \emptyset$$
$$\iff \Delta^*(\{s_0\}, w) \cap F \neq \emptyset$$
$$\iff \Delta^*(S_0, w) \cap F' \neq \emptyset$$
$$\iff w \in L(N)$$

 $L_{\text{DFA}} \subseteq L_{\text{NFA}}$. To prove this direction, given any NFA $N = (Q, \Sigma, \Delta, S_0, F)$, we must show that there exists an equivalent DFA $M = (Q', \Sigma, \delta, s_0, F')$ such that L(M) = L(N). We reproduce the explicit construction I showed during Lecture 5 (I drop the subscripts for compactness).

$$Q' \coloneqq 2^Q$$
$$s_0 \coloneqq S_0$$
$$F' \coloneqq \{B \subseteq Q : B \cap F\}$$

_

 $\delta(B,\sigma) \coloneqq \bigcup_{q \in B} \Delta(q,\sigma)$, for $B \in Q'$ and $\sigma \in \Sigma$. Note that, by definition, the RHS is also equal to $\Delta^*(B,\sigma)$. This will come up in the proof of the upcoming claim.

We must now prove that L(M) = L(N). To do so, we first must establish a relation between δ^* and Δ^* . We state it in the claim below.

Claim. Given an NFA $N = (Q, \Sigma, \Delta, S_0, F)$ and the DFA $M = (Q', \Sigma, \delta, s_0, F')$ which has been constructed as a function of N, we have that $\forall w \in \Sigma^*, B \subseteq Q, \Delta^*(B, w) = \delta^*(B, w)$.

Study this equality carefully. In particular, do the data types make sense?

Proof. We prove this by induction on the length of w.

<u>Base case</u>: $|w| = 0 \Rightarrow w = \varepsilon$. Then,

$$\delta^*(B,w) = \delta^*(B,\varepsilon) = B = \Delta^*(B,\varepsilon) = \Delta^*(B,w)$$

Inductive hypothesis: We assume that the statement is true for every $w \in \Sigma^*$ where |w| = n for some $n \in \mathbb{N}$.

Inductive step: Suppose $w \in \Sigma^*$ and |w| = n + 1. Then $w = x\sigma$ for $x \in \Sigma^*, \sigma \in \Sigma$.

$\Delta^*(B, x\sigma) = \Delta^*(\Delta^*(B, x), \sigma)$	using Fact 1
$= \Delta^*(\delta^*(B, x), \sigma)$	by IH
$= \delta(\delta^*(B, x), \sigma)$	by definition of δ
$= \delta^*(B, x\sigma)$	
$=\delta^*(B,w)$	

We are now ready to show L(N) = L(M). Consider some arbitrary string $w \in \Sigma^*$, then

by definition of acceptance for NFA	$w \in L(N) \iff \Delta^*(S_0, w) \cap F \neq \emptyset$
using the previous claim	$\iff \delta^*(S_0, w) \cap F \neq \emptyset$
by construction of s_0 and F'	$\iff \delta^*(s_0, w) \in F'$
by definition of acceptance for DFA	$\iff w \in L(M)$

This completes the proof.

3 Equivalence of NFA and NFA+ ϵ

3.1 A brief recall and a comment about notation

Recall from Lecture 5 that NFA+ ϵ behave exactly like NFA except that they *allow* ϵ -transitions (pronounced "epsilon"-transitions). ϵ -transitions are transitions that allow an automaton to transition from one state to another without reading any letter from the input tape.

Note that, in order to be extremely explicit, I have used the symbol ϵ (in tex, \epsilon) to talk about "epsilon"-transitions rather than the symbol ϵ (in tex, \varepsilon) which I've reserved for the empty string. This difference in notation is because, strictly speaking, ϵ , the empty string, and ϵ , the symbol representing "epsilon"-transitions, are not the same. The former *is a string* and thus has data type "string". The latter is a special symbol used to label "epsilon"-transitions in automaton. I will be precise in this section and use ϵ and ϵ diligently, but, in general, I will abuse notation and use ϵ in all cases (e.g., Lecture 5 notes).

3.2 A formal definition of NFA+ ϵ

Definition 3.1 (NFA with ϵ -transitions). A <u>non-deterministic</u> finite automaton with ϵ -transitions (NFA+ ϵ) N is a 6-tuple $N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$ where

- Q is the finite set of states
- Σ is the input alphabet and $\epsilon \notin \Sigma$
- ϵ is the special symbol representing "epsilon"-transitions
- Δ is the transition function $\Delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$
- $S_0 \subseteq Q$ is the set of start states
- $F \subseteq Q$ is the set of accept (final) states

To talk about string acceptance for NFA+ ϵ , we must create a way to formally talk about the states the NFA+ ϵ can reach "for free" using ϵ -transitions. Note that we cannot use the Δ^* extended transition function for vanilla NFA because we do not want to consider strings of the form $a\epsilon b$.

Definition 3.2 (ϵ -closure). Given an NFA+ ϵ , $N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$, a state $q \in Q$ and a set of states $A \subseteq Q$, we define the ϵ -closure⁴ for q and A as

 ϵ -closure $(q) = \{ p \in Q : \exists a \text{ walk of } 0 \text{ or more } \epsilon$ -transitions from q to $p \}$

and

$$\epsilon ext{-closure}(A) = \bigcup_{q \in A} \epsilon ext{-closure}(q)$$

Note that, by definition $q \in \epsilon$ -closure(q) and $A \subseteq \epsilon$ -closure(A). Next, to talk about string and language acceptance, we need to define NFA+ ϵ 's extended transition function.

Definition 3.3 (Δ_{ϵ}^*) . Let $N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$ be an NFA+ ϵ , and let $A \subseteq Q, x \in \Sigma^*, \sigma \in \Sigma$. The extended transition function for NFA+ $\epsilon \Delta_{\epsilon}^* : 2^Q \times \Sigma^* \to 2^Q$ (note that the string input does not allow ϵ) is defined as follows. For the base case, we have that

 $\Delta_{\epsilon}^*(A,\varepsilon) = \epsilon \text{-closure}(A) \qquad \text{note the difference between } \epsilon \text{ and } \varepsilon$

⁴This definition is tacitly assuming you are somewhat familiar with graph theory.

And, in the recursive (inductive) case, we have that⁵

$$\Delta^*_\epsilon(A,x\sigma) = \bigcup_{q \in \Delta^*_\epsilon(A,x)} \epsilon\text{-closure}(\Delta(q,\sigma))$$

Note how similar this recursive definition is to the one for vanilla NFA. The only difference now is that *before* and *after* reading a letter, we expand the set of destination sets by checking which states we can reach *for free*. To get a feel for this definition, let's apply it (recursively) to the string w = ab for some subset of states $A \subseteq Q$ and see if it matches the way I was presenting computations of NFA+ ϵ during the lecture

$$\begin{split} \Delta^*_\epsilon(A,ab) &= \bigcup_{q \in \Delta^*_\epsilon(A,a)} \epsilon\text{-closure}(\Delta(q,b)) \\ &= \bigcup_{q \in A'} \epsilon\text{-closure}(\Delta(q,b)) \end{split}$$

Where $A' = \Delta_{\epsilon}^*(A, a)$ is

$$\begin{split} \Delta^*_\epsilon(A,a) &= \bigcup_{p \in \Delta^*(A,\varepsilon)} \epsilon\text{-closure}(\Delta(p,a)) \\ &= \bigcup_{p \in \epsilon\text{-closure}(A)} \epsilon\text{-closure}(\Delta(p,a)) \end{split}$$

This exactly matches how we would run through *all* of the computations for an NFA+ ϵ given the string *ab*. Let's work through this sequence of recursive calls *bottom-up*, i.e., starting from the base case and working our way up to the original function call. This would look like the following

- 1. Check if there are any states we can reach for free from the states in A. Call this set of states A_1 ($A \subseteq A_1$).
- 2. Read a from each of the states in A_1 . Call the set of destination states A_2 .
- 3. For each of the states in A_2 , check if there are any states that we can reach for free. Call this set of states A_3 ($A_2 \subseteq A_3$).
- 4. Read b from each of the states in A_3 . Call the set of destination states A_4 .
- 5. For each of the states in A_4 , check if there are any states that we can reach for free. Call this set of states A_5 ($A_4 \subseteq A_5$).

⁵There was a mistake in a previous version of this note where I defined the recursive case as $\Delta_{\epsilon}^*(A, x\sigma) = \epsilon$ -closure $(\Delta(\Delta_{\epsilon}^*(A, x), \sigma))$. What is the problem with this recursive case? Hint: Take a look at the data types. Thanks to the student who caught this!

6. $\Delta_{\epsilon}^*(A, ab) = A_5$

We note the following facts about Δ_{ϵ}^* which are analogous to the facts about Δ^* .

Fact. Given an NFA+ ϵ , $N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$, a subset $A \subseteq Q, B \subseteq Q$, strings $x, y \in \Sigma^*$, we have that

- 3. $\Delta_{\epsilon}^*(A, xy) = \Delta_{\epsilon}^*(\Delta_{\epsilon}^*(A, x), y)$
- 4. $\Delta^*_{\epsilon}(A \cup B, x) = \Delta^*_{\epsilon}(A, x) \cup \Delta^*_{\epsilon}(B, x)$

Proof. The proofs are by induction. I omit them. The proof of the first fact uses the property that ϵ -closure(ϵ -closure(A)) = ϵ -closure(A). Do you see why?

We are now able to formally define the notion of string and language acceptance for NFA+ ϵ .

Definition 3.4 (String acceptance). Given an NFA+ $\epsilon N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$ and a string $w \in \Sigma^*$, we say that N accepts w if and only if $\Delta^*_{\epsilon}(S_0, w) \cap F \neq \emptyset$.

Definition 3.5 (Language acceptance). Given an NFA+ $\epsilon N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$, the language accepted by N is

$$L(N) = \{ w \in \Sigma^* : \Delta^*_{\epsilon}(S_0, w) \cap F \neq \emptyset \}$$

3.3 Equivalence between NFA and NFA+ ϵ

We are (finally) ready to re-state the theorem I presented towards the end of Lecture 5^6 .

Theorem 2. Given some alphabet Σ , the family of languages accepted by NFA, $L_{NFA} = \{L(N) : N \text{ is an NFA}\}$, is exactly the same as the family of languages accepted by NFA+ ϵ , $L_{NFA+\epsilon} = \{L(N) : N \text{ is an NFA}+\epsilon\}$.

Proof. We again must prove this theorem by double inclusion.

 $L_{\text{NFA}} \subseteq L_{\text{NFA}+\epsilon}$. As discussed during the lecture, this direction is easy because an NFA can be thought of as an NFA+ ϵ which does not have any ϵ -transitions. Thus, we could take an arbitrary NFA N and convert it to an NFA+ ϵ . In this case, $\forall q \in Q, A \subseteq Q$, we will have ϵ -closure(q) = q and ϵ -closure(A) = A in which case $\Delta^*(A, w) = \Delta^*_{\epsilon}(A, w)$ is clearly true.

 $L_{NFA+\epsilon} \subseteq L_{NFA}$. Consider some arbitrary NFA+ $\epsilon N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$. We explicitly construct an NFA $N' = (Q', \Sigma', \Delta', S'_0, F')$ such that L(N') = L(N). We construct N' explicitly as follows

 $Q' \coloneqq Q$

 $\Sigma' \coloneqq \Sigma$. Note: This means ϵ is not part of N's input alphabet, which is desired.

 $S'_0 \coloneqq S_0$

 $F' \coloneqq F \cup \{s \in S_0 : \epsilon \text{-closure}(s) \cap F \neq \emptyset\}$. We will see why this is necessary in a moment.

 $\Delta'(q,\sigma) \coloneqq \Delta^*_{\epsilon}(\{q\},\sigma) \text{ for } q \in Q, \sigma \in \Sigma$

⁶Imagine if I had done all of this during the lecture!

Note how Δ' is defined. It is meant to account for any ϵ -transitions before and after reading the letter σ . For instance, suppose we have the following directed subgraph in N

Then in N', $\Delta'(1, a) = \Delta^*_{\epsilon}(\{1\}, a) = \{4, 6, 3, 5\}$. The only other tricky part about this conversion is the way we defined F'. The set of accept states of N' is the set of accept states of N along with any start states that can, for free, reach a final state. This is because, in vanilla NFA, the only way for the empty string to be accepted is for a start state to be a final state. Thus, if we have the following situation in N'

Then the state 1 will be an accept state in N.

We must now show that L(N) = L(N'). To do so, we need a relation between Δ'^* (which follows the definition of the extended transition function for vanilla NFA) and Δ_{ϵ}^* . We state it in the following claim.

Claim. Given an NFA+ ϵ $N = (Q, \Sigma, \epsilon, \Delta, S_0, F)$ and the NFA $N' = (Q', \Sigma', \Delta', S'_0, F')$ which has been constructed as a function of N, we have that $\forall w \in \Sigma^*, |w| \ge 1, B \subseteq Q, \Delta'^*(B, w) = \Delta^*_{\epsilon}(B, w).$

Note the lower bound on the length of w - the statement is in fact false if |w| = 0 by definition of $\Delta^{\prime*}$ and Δ^{*}_{ϵ} .

Proof. We prove this claim by induction on |w|.

<u>Base case</u>: $|w| = 1 \Rightarrow w = \sigma, \sigma \in \Sigma$. Then,

$$\begin{split} \Delta^{\prime*}(B,\sigma) &= \bigcup_{q \in B} \Delta^{\prime}(q,\sigma) \\ &= \bigcup_{q \in B} \Delta^{*}_{\epsilon}(\{q\},\sigma) \\ &= \Delta^{*}_{\epsilon}(B,\sigma) \end{split} \qquad \qquad \text{Generalization of Fact 3} \end{split}$$

Inductive hypothesis: We assume that the statement is true for every $w \in \Sigma^*$ where |w| = n for some $n \in \mathbb{N}, n \ge 1$.

 $\underline{\text{Inductive step:}} \text{ Suppose } w \in \Sigma^* \text{ and } |w| = n + 1. \text{ Then } w = x\sigma \text{ for } x \in \Sigma^*, \sigma \in \Sigma.$

$$\begin{split} \Delta^{\prime*}(B,x\sigma) &= \Delta^{\prime*}(\Delta^{\prime*}(B,x),\sigma) & \text{using Fact 1} \\ &= \Delta^*_{\epsilon}(\Delta^*_{\epsilon}(B,x),\sigma) & \text{by IH and the same argument as in the BC} \\ &= \Delta^*_{\epsilon}(B,x\sigma) & \text{using Fact 4} \end{split}$$

We are now able to show L(N) = L(N'). Pick some arbitrary $w \in \Sigma^*$. If $w = \varepsilon$ then

$$\varepsilon \in L(N) \iff$$
 there is an ϵ walk of length 0 or more from some $s \in S_0$ to some $f \in F$
 $\iff \exists s \in S_0$ such that ϵ -closure $(s) \cap F \neq \emptyset$
 $\iff S'_0 \cap F' \neq \emptyset$
 $\iff \varepsilon \in L(N')$

Otherwise, if $w \neq \varepsilon$ then it has length greater or equal to 1. Then

$$w \in L(N) \iff \Delta^*_{\epsilon}(S_0, w) \cap F \neq \emptyset$$
$$\iff \Delta'^*(S'_0, w) \cap F' \neq \emptyset$$
$$\iff w \in L(N')$$

Done!

There is a much cleaner way of proving this result using homomorphisms. I leave that for another note.