
COMP 330 Fall 2023

Supplementary Note

Lecture 7

Cesare Spinoso-Di Piano

Last updated: September 24, 2023

This supplementary note provides a more detailed presentation of the FA to regular expression
conversion algorithm as well as slightly more complicated examples/illustrations than the one(s)
seen in class.

1 FA to RegExp conversion algorithm

Recall from the Lecture 7 notes the “high-level” procedure I gave to convert any FA to a regular
expression. This procedure included two major steps. The first one is the conversion of the FA to
a GFA and the second is the “shrinking” of this GFA.

1.1 Conversion to a GFA

The first step of the conversion algorithm is, given some input FA N , to convert N into a generalized
finite automaton (GFA) N ′. A GFA must have the following properties:

1. It must have a single start state with only outgoing edges.

2. It must have a single accept state with only incoming edges.

3. The labels to its transitions are of type “regular expression”. If the label of an edge from
state p to q in a GFA N ′ is r, then this means that, given any string which matches with the
pattern in r, N ′ can read that entire string and transition from p to q.

I will not provide a complete formalization of GFA (i.e., a tuple-like definition), but it shouldn’t
be too difficult for you to see how you could do so. In particular, the major difference would be in
the way you define the transition function.

We saw that it is relatively easy to convert any FA to a GFA. In order to meet conditions (a) and
(b), we can leverage the convenience of ϵ-transitions (which in the case of GFA are really transitions
labeled with the atomic regular expression that looks like the empty string). For example, consider
the following NFA+ϵ1

1Please don’t ask me what this machine accepts. I have no idea. I suppose trying to figure that out could be a
good exercise, but don’t waste too much time on it.

1



q2

q1 q3

q4

q0

q5 q6

a, b

a, b

a

a, b
a

b

a

b

ϵ

a

a, b

Then the equivalent GFA is

q2

q1 q3

q4

q0

q5 q6

s

f

a+ b

a+ b

a

a+ b
a

b

a

b

ϵ

a

a+ b

ϵ

ϵ

ϵ

ϵ

ϵ

Where state s is the unique start state with only outgoing edges and f is the unique accept
state with only incoming edges.

1.2 Shrinking of the GFA

The second step of the conversion algorithm is to “shrink” the GFA, N ′, by ripping all intermediate
states (i.e., all states that are not the start and accept state). The final GFA, N ′′, will look like

s fr

At which point, it is clear that the equivalent regular expression for N ′′ is r since L(r) = L(N ′′).
However, if we are careful about how we rip out states and stitch the machine back together, then

2



we will have found an equivalent regular expression for N ′ as well. Here is a more explicit procedure
of how this rip/stitch process should be done. In this procedure, we let rab be the regular expression
which labels the transition from qa to qb.

1. Given a GFA N ′, if N ′ has 2 states, return N ′. Otherwise, pick some intermediate state and
call it qk. This will be the state we rip out of the machine.

2. Copy all of the states and transitions of N ′ except for the state qk and any of its incom-
ing/outgoing edges. Call this copied machine N ′′.

3. For every pair of states qi, qj from N ′′ (qi, qj may be the same state), do the following:

(a) Check whether there is a path from qi to qj labeled qi −−→
rik

qk −−→
rkk

qk −−→
rkj

qj in N ′. If

yes, let r′ := rikr
∗
kkrkj . Otherwise, check whether there is path qi −−→

rik
qk −−→

rkj
qj in N ′.

If yes, let r′ := rikrkj . Otherwise, let r′ := ∅.
(b) If r′ ≡ ∅, do nothing. Otherwise, if r′ ̸≡ ∅, and there is an edge labeled rij from qi to qj

in N ′ then the edge in N ′′ will be labeled rij + r′. Otherwise, create an edge from qi to
qj and label it r′ in N ′′.

4. Repeat step 1. on N ′′.

It should be clear to you why all of the information in the GFA is preserved. At any particular
step of this procedure, if, when reading w, the GFA could transition from qi to qj through qk,
then it will be equally as able to do so in the machine without qk by using the edge from qi to qj .
This transition is possible because the pattern w matched with so N ′ could transition from qi to
qj through qk has been added to the pattern of strings that allow N ′′ to transition directly from qi
to qj .

Let’s illustrate one step of this procedure for the following GFA2

2I will never ever ask you to convert such an FA in a midterm or a final. That would be diabolical. Knowing
about this algorithm and its general idea is sufficient.

3



s f

q1

q4

q2

q5

q3

ϵ

ϵ

ϵ

ϵ

a+ b∗a

a

a

b

a+ b

a∗b∗

bb

abb∗

(aa)∗b∗

bbb

a

a

a∗b

a

Suppose we rip out state q3. We must stitch the machine back together such that no information
is lost. I will go through a few pairs of states that will receive additions to their transitions:

q1 → q1 The machine can go from q1 back to q1 either by reading a string with any number of a’s (using
its self loop) or by reading a string which matches the pattern (a + b)b∗a and transitioning
to q3 and back to q1. Thus, the label for the edge from q1 to q1 in the new GFA will be
a+ (a+ b)b∗a.

q1 → q4 The machine can go from q1 to q4 either by reading the string a or by reading a string which
matches the pattern (a+ b)b∗a∗b∗ and transitioning to q3 and then to q4. Thus, the label for
the edge from q1 to q4 in the new GFA will be a+ (a+ b)b∗a∗b∗.

q1 → q5 The machine isn’t able to read a string and directly transition from q1 to q5. Instead, it
can read a string which matches the pattern (a + b)b∗(aa)∗b∗ and transition through q3 to
q5. Thus, in the new GFA, a new edge from q1 to q5 will be created and will have label
(a+ b)b∗(aa)∗b∗.

I leave the rest of the pairs for you to try out to make sure you’ve understood the algorithm.

4


