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These are supplementary notes which Prakash wrote. In them, he discusses
partial orders, well-founded orders and proves the principle of mathemat-
ical induction. This extra bit of reading is for fun and is not “testable”
material.

1 Partial orders

Just as equivalence relations are an abstraction of equality, there is another
class of relations that abstract inequality. These are the relations that ab-
stract the notion of “ordering.” However, unlike the usual notion of ordering
of real numbers or integers we will not insist that every pair of elements are
related.

Definition 1. Let S be any set. A partial order on S is a binary relation,
usually written ≤, satisfying

1. ∀x ∈ S.x ≤ x [reflexivity]

2. ∀x, y ∈ S.(x ≤ y) ∧ (y ≤ x) ⇒ (x = y) [antisymmetry].

3. ∀x, y, z.(x ≤ y) ∧ (y ≤ z) ⇒ (x ≤ z) [transitivity].

We are not requiring
∀x, yS, x ≤ y or y ≤ x.

If a partial order does satisfy this additional condition we call it a total
order or a linear order.
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Typical examples are the set of integers ordered by the usual notion of less
than or equal, the set of subsets of a given set ordered by inclusion, or the
set of complex numbers ordered by their magnitude. Henceforth we shall
say poset rather than “set together with a partial order”. Of course a given
set may have many partial orders defined on it. Note that this notion does
not include the usual notion of “strictly less than”. One can introduce the
symbol x < y as an abbreviation for x ≤ y and x ̸= y. When I refer to
this concept I will use the phrase “strictly smaller” or “strictly less than” or
“strictly decreasing”. When I just say “less than” I mean what one would
call “less than or equal to” in ordinary language.

Given a subset X ⊂ S of a poset S we say that the element x0 is the least
element of X if it is less than every other element of X. In symbols

∀x ∈ X, x0 ≤ x.

A given set may or may not have a least element. For example if we look
at all the negative integers there is no least element. If we look at all the
positive fractions there is no least element. In both these examples we had
a total order. If we have a partially ordered set we can have the following
situation. We say that an element m ∈ X is minimal if it is not strictly
greater than anything else in X. In symbols

∀x ∈ X, ¬(x < m).

The element m could be less than x or unrelated to it. Consider the non-
empty subsets of the {a, b, c} ordered by set inclusion. The singleton sets
{a}, {b}, {c} are all minimal but there is no least element in the set. If a
set does have a least element then it is obviously also (the only) minimal
element.

2 Well-founded orders and Induction

In this section I will prove the principle of induction for general well-founded
orders. The note is a bit terse and is intended to be a supplement to the
lecture. It is, however, complete and you can - in principle - learn everything
that you need to know for this class and beyond, about induction, from this
note.

I assume that you have studied the principle of mathematical induction and
used it to prove identities like Σn

i=1i
2 = 1

6n(n+ 1)(2n+ 1).
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For many students this principle appears as a magic wand. My experience is
that many are unsure of the status of this principle; “is it an assumption?”,
“a definition?” or a “theorem?”. The short answer is that it is a theorem.
Its range of applicability is much wider than the exercises that you had to
do in discrete mathematics classes may have suggested.

The theory of induction is deep and difficult as can be seen by glanc-
ing at a book like “Elementary Induction on Abstract Structures” by Y.
Moschovakis. What we do in this note is a small exercise in chapter 1 of
that book. It will, however, suffice for the applications that we have in mind.
The main theorem that we prove rests on the crucial notion of well-founded
order.

Definition 2. Let (S,≤) be a poset. The order relation ≤ is said to be
well founded if every nonempty subset has a minimal element.

Note, I did not say “minimum”, just “minimal”. The set of subsets of
a finite set form a well-founded order. The set of positive integers forms a
well-founded order, but the set of all integers do not. The set of subsets of an
infinite set, ordered by inclusion, does not form a well-founded subset. The
set of positive rationals does not form a well-founded order. But almost
every structure that arises in computer science does form a well-founded
order.

Proposition 3. A poset S is a well-founded order iff there are no infinite
descending sequences in S.

Proof Immediate from the definition.

One can see why the negative integers (and hence all integers) do not form
a well-founded order.

2.1 Induction

So who cares about well-founded orders anyway?

Definition 4. Suppose that (S,≤) is a poset, we say that the principle of
induction holds for S if for any predicate P , we have

(∀x ∈ S.((∀y ∈ S.(y < x ⇒ P (y)) ⇒ P (x))) ⇒ (∀x ∈ S.P (x)).

This generalizes the usual notion of induction. You may notice that the usual
notion of “base case” appears to be missing. This is implicitly included in
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the above formula since, if u is a minimal element, the (empty) antecedent
above implies that P (u) is true.

The reason for studying well-founded orders is contained in the following
theorem.

Theorem 5. For a poset (S,≤) the principle of induction holds if and only
if the order relation ≤ is well-founded.

Proof Suppose that ≤ is indeed a well-founded order. Let P be any pred-
icate. We need to show that the principle of induction holds; since this
has the form of an implication we need to show that the consequent holds
whenever we assume the antecedent. Accordingly we assume the antecedent.
Suppose that ∀x ∈ S.(∀y ∈ S.y < x ⇒ P (y)) ⇒ P (x). We must show that
∀x ∈ S.P (x). Consider the set U = {u ∈ S|¬P (u)}. What we need to
show is that U is empty. Suppose that U is not empty then, because U is
a subset of S, which we have assumed is a well-founded order, there must
be a minimal element u0. Thus ∀y ∈ S.y < u0 ⇒ y ̸∈ U , in other words
if y is less than u0 it must satisfy P . But according to our assumption,
whenever everything less than u0 satisfies P , u0 itself must satisfy P . But
now we have a contradiction because u0 ∈ U which by definition consists of
elements that do not satisfy P . Thus our original assumption that U was
not empty must be false, which is to say that ∀x ∈ S.P (x).

Now for the reverse direction. Suppose that the principle of induction holds
for (S,≤). Consider the predicate F (x) defined as “there are no infinitely
decreasing chains of elements of S that are all strictly less than x”. Now
suppose that x is some fixed element of S and that somehow we know that
for all elements y that are strictly less than x, F (y) holds. It must be the
case that F (x) holds because suppose that there is a decreasing sequence
x1 > x2 > x3 . . . all below x. Then x2 is strictly less than x and there is an
infinite, strictly decreasing sequence below it; in other words ¬F (x2). But
we assumed that for all y strictly less than x – and x2 is certainly in this
collection – that F (y) does hold. Thus such a chain cannot exist. Thus we
have shown that

∀x ∈ S.(∀y ∈ S.y < x ⇒ F (y)) ⇒ F (x)

which means we can apply the principle of induction to F (x) to conclude
that ∀x.F (x). By our proposition above, this means that the poset is a
well-founded order.

Here is another, slicker, argument for the reverse direction. Suppose that
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there is a set U ⊂ S which has no minimal element. This means that
∀u ∈ U ∃v, v < u and v ∈ U . Now consider the predicate P (x)

def
= x ̸∈ U .

Suppose that for any x ∈ S we know that ∀y < x P (y). I claim that P (x)
must hold. If P (x) does not hold then x ∈ U but our assumption about x is
that every element y < x is not in U (this is what P (y) means) so, in other
words, x is a minimal element of U . But this contradicts the assumption
about U . Thus we have proved

∀x ∈ S [∀y < x P (y)] ⇒ P (x).

We are assuming that the principle of induction holds and the formula above
is exactly the premise of the principle of induction. Thus, we have proved
∀x P (x). But what is P? We have just proved ∀x x ̸∈ U , i.e. U is the
empty set. In short every non-empty set must have a minimal element.

Now we can check that the so called principle of mathematical induction is
a special case of this. The structure of interest here is the natural numbers
i.e. the set N = {0, 1, 2, 3, . . .}. This is clearly a well-founded order so the
principle of induction is true. It only remains to put this in the familiar form.
Let P be any predicate. There is a unique minimum element namely 0. Thus
if we choose x to be 0 in the statement of the principle of induction above
we have to show that (∀y ∈ N.y < 0 ⇒ P (y)) ⇒ P (0). The antecedent is
vacuously true thus we must show that P (0) is true. Now if we choose x to
be n+ 1 we get

(∀y ∈ N.y < (n+ 1) ⇒ P (y)) ⇒ P (n+ 1)

or rewriting this less clumsily we can say ∀y ≤ n.P (y) ⇒ P (n+1). Putting
the pieces together we get the usual statement i.e.

(P (0) ∧ (∀n.(∀y ≤ n.P (y) ⇒ P (n+ 1)))) ⇒ ∀n ∈ N.P (n).

The other principle that interests us in the principle of structural induction.
Let S be any inductively defined set. Associated with the elements of S is
the stage at which they enter the set S. We can define a well-founded order
on S by saying that x ≤ y if x enters S at the same stage or before y in
the inductive definition. Thus we can apply induction to this collection. An
example will illustrate the idea.

Suppose that we define the set of binary trees as follows. The empty tree,
written [] is a tree. If t1 and t2 are trees then maketree[t1, t2] is also a tree.
This is a typical inductive definition. Now the principle of induction applied
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to these tree structures says the following. Let P be any predicate on trees.
If you can prove P ([]) and if you can prove that for any trees t1 and t2 that
whenever P (t1) and P (t2) holds then P (maketree(t1, t2)) also holds you can
invoke the principle of structural induction to conclude that for all trees, t,
P (t) must hold. Thus we can do induction on trees and a multitude of other
structures as well.

2.2 Zermelo’s theorem

Please do not read this section. It will torment you needlessly.1

Definition 6. A well-order is a well-founded total order.

The usual order on the natural numbers is a well-order. Given a well-order every
element, except the largest one if such an element exists, has a unique next element.
Many examples of well-ordered sets can be given. On the other hand try to find
a well-order on the real numbers. After trying for a while one tends to think that
this is not possible.

However, using the Axiom of Choice, Zermelo proved

Theorem 7. Every set can be well ordered.

This created a sensation. The axiom of choice seems like an “obvious” principle but

Zermelo’s theorem seems unbelievable. As of yet no one can write down an explicit

example of a well-order on the reals. This leads many logicians to reject the axiom of

choice. However, the axiom of choice is equivalent to Zermelo’s theorem and also to

Zorn’s lemma. The latter is essential to prove all kinds of theorems in mathematics:

for example, every vector space has a basis. Thus most mathematicians are loath

to give up the axiom of choice.

1This is Cesare and I agree.
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