









































































































Let's now show that 2 PDA L CFO

Consider following NPDA which
Ftaccepts

via empty stacks

FEE i.it s z
E ZOSE
a

On input w aabb

1 1 El 1111
Start End












































































































ConversiontoCFI
Let's take the same computation
represent it as a parsetree Why We're

trying to get the equivalent CFG We
will use the internal nodes to represent the

machine pushing popping and the leaf nodes
to represent what letters terminals are read

generated during this process

Effectively we represent the PDA's

push pop recursively starting from
pop Zo at the top level

Copy paste above tree

El 11 fol Held

Tanner




































One of the POP
The netbase cases

pop Zo effectof P
pilot p

P popE on stack

resultFrist prkxhipxp.pe EEeeE
isto read a WEE

LENT
Parse tree representation of grebase
The PDA Some info is

ELI
missing from parse tree to

accurately represent P's

computation What is it
The States Need this otherwise base
cases would change
We're ready to propose a grammar based
on P That could generate this parse tree

TopZo pop
Avariable

Top level

pop Zo p p E Base case 1

pop X p p b n 2

pushX p p a a 3



pop Zo pep pushX pep
popX pep

popX pep pushX pep
popX pep

popX pop 11 2

Let's simplify notation a little by
1 Using LpopZo pop pZop as

the var name

2 B c now with 1 can't distinguish
push vs pop place the base case of
pushing directly in the popping
recursive case ptop ap Xp pZop

Then pondinggrammis
5s pZop
pZop El ap Xp pZop
pXp b 1 app p Zop

Rory What happens when have161 1



Upshot

Despite their difference in appearances

LCFG LNPDA L NPDA

49
via

98


