Theory of Computation

Tutorial - DFAs

Cesare Spinoso-Di Piano

- 1. Introduction to DFAs
- 2. Regular Languages

Introduction to DFAs

DFAs

Formal definition of a DFA

Definition. A <u>deterministic</u> finite automaton (DFA) M is a 5 element tuple $M = (Q, \Sigma, \delta, q_0, F)$ where

Q is the set of all states

 $\boldsymbol{\Sigma}$ is the alphabet

 δ is the transition function $\delta: \boldsymbol{Q} \times \boldsymbol{\Sigma} \to \boldsymbol{Q}$

 q_0 is the (unique) initial state

F is the set of final states

A DFA is a machine that takes as input a string and returns either an accept or a reject.

Definition. Let M be a DFA. The language L(M) includes all strings (over the alphabet Σ) accepted by M. That is, $L(M) = \{$ all strings that "drive" M to a final state $\}$.

Formally, we write this as $L(M) = \{w \in \Sigma^* : \delta^*(q_0, w) \in F\}$, where δ^* is the extended transition function $\delta^* : Q \times \Sigma^* \to Q$ which, given a state q and a string w, returns the state that M would be in after reading w starting from q.

The following is a DFA ${\sf M}$ such that ${\sf L}({\sf M})=\{w\in\{0,1\}^*:w \text{ starts} with a 1\}$ for $\Sigma=\{0,1\}.$

 $L(M) = \{w \in \{0,1\}^* : w \text{ starts with a } 1\}$ Input String: 101

The input finishes in a final state, \mathbf{M} accepts.

 $L(M) = \{w \in \{0,1\}^* : w \text{ starts with a } 1\}$ Input String: 010

The input does not end in a final state, \mathbf{M} rejects.

Example. Create a DFA that accepts the language $L = \{w \in \{0, 1\}^* : w \text{ contains 00 as a substring}\}.$

Regular Languages

Definition. A language *L* is regular if there exists a DFA *M* such that L(M) = L. One way to show that a language *L* is regular is to show there is a DFA *M* that accepts it.

Example. Show that the language

 $L = \{a^n : n \text{ is a multiple of 2 but not of 3}\}$ ($\Sigma = \{a\}$) is regular.