Theory of Computation

Tutorial - Normal Forms

Cesare Spinoso-Di Piano

- 1. Production simplification
- 2. Normal forms

Production simplification

Definition. A λ -production is any production of the form

 $A\to \lambda$

Definition. A nullable variable is any variable such that

 $A \Rightarrow^* \lambda$

Let G = (V, T, S, P) be any CFG such that $\lambda \notin L(G)$. Then we can always convert G to an equivalent grammar G' = (V', T', S', P') with no λ -productions or nullable variables.

- 1. Identify all nullable variables V_N .
- 2. For each production P in G

$$A \to x_1 x_2 \dots x_m, x_i \in T \cup V$$

put P in G'.

3. Add to G' every possible production resulting from replacing some nullable variable x_j by λ (except for $A \rightarrow \lambda$).

Example

Example. Suppose G has the following productions

 $S \rightarrow aABC$ $A \rightarrow \lambda |BC$ $B \rightarrow bb|C$ $C \rightarrow \lambda |c$

The nullable variables are A, B, C. The simplified grammar is

$$S \rightarrow aABC|aAB|aBC|aAC|aA|aB|aC|a$$

 $A \rightarrow BC|B|C$
 $B \rightarrow bb|C$
 $C \rightarrow c$

Exercise. Eliminate all λ -productions from

 $S \rightarrow AaB|aaB$ $A \rightarrow \lambda$ $B \rightarrow bbA|\lambda$ **Definition.** Any production of the form $A \rightarrow B$ from a grammar G = (V, T, S, P) where $A, B \in V$ is a **unit-production**.

Given a grammar G = (V, T, S, P) with unit-productions convert it to an equivalent grammar G' = (V', T', S', P') without any unit-productions as follows:

- 1. Remove any productions $A \rightarrow A$.
- 2. Find all variables $A, B \in V$ such that $A \Rightarrow^* B$.
- 3. Put all the non-unit productions in P'
- 4. For every pair A, B identified in step 1., if $B \to x_1|...|x_n$ are productions in P', then add $A \to x_1|...|x_n$ to P'.

Example

Example. Suppose the following productions rules are found in G

 $S \rightarrow A|bBb|C$ $A \rightarrow a|bC|C$ $B \rightarrow b$ $C \rightarrow abA|CC|B$

Removing all unit-productions and adding productions accordingly gives the following grammar

 $S \rightarrow bBb|a|bC|abA|CC|b$ $A \rightarrow a|bC|abA|CC|b$ $B \rightarrow b$ $C \rightarrow abA|CC|b$

Exercise. Eliminate all unit-productions from

 $S \rightarrow a|aA|B|C$ $A \rightarrow aB|\lambda$ $B \rightarrow Aa$ $C \rightarrow cCD$ $D \rightarrow ddd|Cd$ **Definition.** Given a grammar G = (V, T, S, P), a variable $A \in V$ is **useful** if it appears in derivation of at least one string w in L(G). Otherwise, the variable is **useless** (either unreachable or non-generating).

Definition. A production $x \rightarrow y$ is **useless** if it contains any useless variable.

Theorem. Removing useless productions from G produces an equivalent grammar G'.

Example

Example. Suppose the grammar *G* has the following productions:

$$S \rightarrow A|C$$

 $A \rightarrow aA|\lambda$
 $B \rightarrow bA$
 $C \rightarrow aCA$

Notice that B (unreachable) and C (non-generating) are useless variables, so we can remove all productions containing them and get the following grammar

S
ightarrow A $A
ightarrow aA | \lambda$

Exercise. Eliminate all useless productions from

 $S \rightarrow a|aA|B|C$ $A \rightarrow aB|\lambda$ $B \rightarrow Aa$ $C \rightarrow cCD$ $D \rightarrow ddd|Cd$ To clean up a grammar follow the steps shown above in this order:

- 1. Remove nullable variables and $\lambda\text{-productions}$
- 2. Remove unit productions
- 3. Remove useless productions

Exercise. Simplify the following grammar $G = (\{S, A, B, C, D\}, \{a, b\}, S, P)$ with P

S
ightarrow aaA|aBB|DaB $A
ightarrow AaA|\lambda$ B
ightarrow bB|DC
ightarrow B $D
ightarrow \lambda|bDa$

Normal forms

Definition. A context-free grammar G = (V, T, S, P) is in **chomsky normal form** if all of its productions are of the from

$$A
ightarrow BC$$
 OR $A
ightarrow a$

Where $A, B, C \in V$ and $a \in T$. Example. The following grammar G = (V, T, S, P) is NOT in CNF

> $S \rightarrow BC|A$ $A \rightarrow aa|aAAB$

Conversion to CNF

Theorem. Any CFG G (where $\lambda \notin L(G)$) can be converted to CNF. To convert a grammar G = (V, T, S, P) that is not in CNF to an equivalent grammar G' = (V', T', S', P') in CNF:

- 1. Simplify G. Add production rules to P'.
- For every terminal x ∈ T, create a rule T_x → x. Add to P'. If the only problem is having productions with more than 2 variables on the right, skip this step.
- 3. For any production $A \rightarrow C_1 C_2 \dots C_n$ convert it to the following n-1 production rules and add them to P'.

 $\begin{array}{c} A \rightarrow C_1 V_1 \\ V_1 \rightarrow C_2 V_2 \\ \\ \cdots \end{array}$

 $V_{n-2} \rightarrow C_{n-1}C_n$

Exercise. Convert the following grammar to CNF

 $S \rightarrow bS|Aa|A|C$ $A \rightarrow aab|\lambda$ $B \rightarrow AcBB$ **Definition.** A context-free grammar G = (V, T, S, P) is said to be in Greibach normal form if all productions have the form

A
ightarrow ax

where $a \in T, x \in V^*$. Example. The following grammar is NOT in GNF

 $S \rightarrow abSbS|aaS|a$

Theorem. Every CFG G ($\lambda \notin L(G)$) can be converted into an equivalent grammar G' in GNF.