Theory of Computation
 Tutorial - Normal Forms

Cesare Spinoso-Di Piano

Plan for today

1. Production simplification
2. Normal forms

Production simplification

λ-productions and nullable variables

Definition. A λ-production is any production of the form

$$
A \rightarrow \lambda
$$

Definition. A nullable variable is any variable such that

$$
A \Rightarrow^{*} \lambda
$$

Removing λ-productions and nullable variables

Let $G=(V, T, S, P)$ be any CFG such that $\lambda \notin L(G)$. Then we can always convert G to an equivalent grammar $G^{\prime}=\left(V^{\prime}, T^{\prime}, S^{\prime}, P^{\prime}\right)$ with no λ-productions or nullable variables.

1. Identify all nullable variables V_{N}.
2. For each production P in G

$$
A \rightarrow x_{1} x_{2} \ldots x_{m}, x_{i} \in T \cup V
$$

put P in G^{\prime}.
3. Add to G^{\prime} every possible production resulting from replacing some nullable variable x_{j} by λ (except for $A \rightarrow \lambda$).

Example

Example. Suppose G has the following productions

$$
\begin{aligned}
& S \rightarrow a A B C \\
& A \rightarrow \lambda \mid B C \\
& B \rightarrow b b \mid C \\
& C \rightarrow \lambda \mid c
\end{aligned}
$$

The nullable variables are A, B, C. The simplified grammar is

$$
\begin{aligned}
& S \rightarrow a A B C|a A B| a B C|a A C| a A|a B| a C \mid a \\
& A \rightarrow B C|B| C \\
& B \rightarrow b b \mid C \\
& C \rightarrow c
\end{aligned}
$$

Exercise

Exercise. Eliminate all λ-productions from

$$
\begin{aligned}
& S \rightarrow A a B \mid a a B \\
& A \rightarrow \lambda \\
& B \rightarrow b b A \mid \lambda
\end{aligned}
$$

Unit production and removing them

Definition. Any production of the form $A \rightarrow B$ from a grammar $G=(V, T, S, P)$ where $A, B \in V$ is a unit-production.

Given a grammar $G=(V, T, S, P)$ with unit-productions convert it to an equivalent grammar $G^{\prime}=\left(V^{\prime}, T^{\prime}, S^{\prime}, P^{\prime}\right)$ without any unit-productions as follows:

1. Remove any productions $A \rightarrow A$.
2. Find all variables $A, B \in V$ such that $A \Rightarrow^{*} B$.
3. Put all the non-unit productions in P^{\prime}
4. For every pair A, B identified in step 1 ., if $B \rightarrow x_{1}|\ldots| x_{n}$ are productions in P^{\prime}, then add $A \rightarrow x_{1}|\ldots| x_{n}$ to P^{\prime}.

Example

Example. Suppose the following productions rules are found in G

$$
\begin{aligned}
& S \rightarrow A|b B b| C \\
& A \rightarrow a|b C| C \\
& B \rightarrow b \\
& C \rightarrow a b A|C C| B
\end{aligned}
$$

Removing all unit-productions and adding productions accordingly gives the following grammar

$$
\begin{aligned}
& S \rightarrow b B b|a| b C|a b A| C C \mid b \\
& A \rightarrow a|b C| a b A|C C| b \\
& B \rightarrow b \\
& C \rightarrow a b A|C C| b
\end{aligned}
$$

Exercise

Exercise. Eliminate all unit-productions from

$$
\begin{aligned}
& S \rightarrow a|a A| B \mid C \\
& A \rightarrow a B \mid \lambda \\
& B \rightarrow A a \\
& C \rightarrow c C D \\
& D \rightarrow d d d \mid C d
\end{aligned}
$$

Removing useless variables

Definition. Given a grammar $G=(V, T, S, P)$, a variable $A \in V$ is useful if it appears in derivation of at least one string w in $L(G)$. Otherwise, the variable is useless (either unreachable or non-generating).

Definition. A production $x \rightarrow y$ is useless if it contains any useless variable.

Theorem. Removing useless productions from G produces an equivalent grammar G^{\prime}.

Example

Example. Suppose the grammar G has the following productions:

$$
\begin{aligned}
& S \rightarrow A \mid C \\
& A \rightarrow a A \mid \lambda \\
& B \rightarrow b A \\
& C \rightarrow a C A
\end{aligned}
$$

Notice that B (unreachable) and C (non-generating) are useless variables, so we can remove all productions containing them and get the following grammar

$$
\begin{aligned}
& S \rightarrow A \\
& A \rightarrow a A \mid \lambda
\end{aligned}
$$

Exercise

Exercise. Eliminate all useless productions from

$$
\begin{aligned}
& S \rightarrow a|a A| B \mid C \\
& A \rightarrow a B \mid \lambda \\
& B \rightarrow A a \\
& C \rightarrow c C D \\
& D \rightarrow d d d \mid C d
\end{aligned}
$$

Grammar simplification

To clean up a grammar follow the steps shown above in this order:

1. Remove nullable variables and λ-productions
2. Remove unit productions
3. Remove useless productions

Exercise

Exercise. Simplify the following grammar $G=(\{S, A, B, C, D\},\{a, b\}, S, P)$ with P

$$
\begin{aligned}
& S \rightarrow a a A|a B B| D a B \\
& A \rightarrow A a A \mid \lambda \\
& B \rightarrow b B \mid D \\
& C \rightarrow B \\
& D \rightarrow \lambda \mid b D a
\end{aligned}
$$

Normal forms

Chomsky normal form

Definition. A context-free grammar $G=(V, T, S, P)$ is in chomsky normal form if all of its productions are of the from

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a
\end{aligned}
$$

Where $A, B, C \in V$ and $a \in T$.
Example. The following grammar $G=(V, T, S, P)$ is NOT in CNF

$$
\begin{aligned}
& S \rightarrow B C \mid A \\
& A \rightarrow a a \mid a A A B
\end{aligned}
$$

Conversion to CNF

Theorem. Any CFG G (where $\lambda \notin L(G)$) can be converted to CNF. To convert a grammar $G=(V, T, S, P)$ that is not in CNF to an equivalent grammar $G^{\prime}=\left(V^{\prime}, T^{\prime}, S^{\prime}, P^{\prime}\right)$ in CNF:

1. Simplify G. Add production rules to P^{\prime}.
2. For every terminal $x \in T$, create a rule $T_{x} \rightarrow x$. Add to P^{\prime}. If the only problem is having productions with more than 2 variables on the right, skip this step.
3. For any production $A \rightarrow C_{1} C_{2} \ldots C_{n}$ convert it to the following $n-1$ production rules and add them to P^{\prime}.

$$
\begin{aligned}
A & \rightarrow C_{1} V_{1} \\
V_{1} & \rightarrow C_{2} V_{2} \\
& \ldots \\
V_{n-2} & \rightarrow C_{n-1} C_{n}
\end{aligned}
$$

Exercise

Exercise. Convert the following grammar to CNF

$$
\begin{aligned}
& S \rightarrow b S|A a| A \mid C \\
& A \rightarrow a a b \mid \lambda \\
& B \rightarrow A c B B
\end{aligned}
$$

Greibach normal form

Definition. A context-free grammar $G=(V, T, S, P)$ is said to be in Greibach normal form if all productions have the form

$$
A \rightarrow a x
$$

where $a \in T, x \in V^{*}$.
Example. The following grammar is NOT in GNF

$$
S \rightarrow a b S b S|a a S| a
$$

Theorem. Every CFG $G(\lambda \notin L(G))$ can be converted into an equivalent grammar G^{\prime} in GNF.

