Theory of Computation

Tutorial - Introduction to Grammars

Cesare Spinoso-Di Piano

- 1. What's a grammar?
- 2. Grammar formalization
- 3. Types of grammars
- 4. Regular grammars
- 5. Linear grammars
- 6. Regular grammars and regular languages

What's a grammar?

What's a grammar?

Grammar formalization

Definition. A grammar is a 4-tuple G = (V, T, S, P) where

- V is a finite set of variables (upper case symbols)
- T is a finite set of terminals (lower case symbols)
- *S* is the (unique) start variable
- P is a finite set of productions

Productions in P have the form $x \to y$ where, in their most general form, $x \in (T \cup V)^*$ and $y \in (T \cup V)^*$.

Example. $G = (V = \{S, A, B\}, T = \{a, b\}, S, P)$ where P is

 $S
ightarrow A | \lambda$ A
ightarrow a | bbBa $B
ightarrow b | \lambda$ **Definition.** If using a sequence of productions we can obtain y from x we say x **derives** y or $x \Rightarrow^* y$.

Example. From G in the previous example,

 $S
ightarrow A | \lambda$ A
ightarrow a | bbBa $B
ightarrow b | \lambda$

the grammar G can generate the string bbba

 $S \Rightarrow A \Rightarrow bbBa \Rightarrow bbba$ or we can write it as $S \Rightarrow^* bbba$

Grammars as language generators

Definition. A grammar G = (V, T, S, P) is said to **generate** a language L(G) which is defined as $L(G) = \{w \in T^* : S \Rightarrow^* w\}$.

Example. From G in the previous example,

 $S
ightarrow A | \lambda$ A
ightarrow a | bbBa $B
ightarrow b | \lambda$

we have

- $S \Rightarrow \lambda$
- $S \Rightarrow A \Rightarrow a$
- $S \Rightarrow A \Rightarrow bbBa \Rightarrow bba$
- $S \Rightarrow A \Rightarrow bbBa \Rightarrow bbba$

 $L(G) = \{\lambda, a, bba, bbba\}$

Exercise

Exercise. What is the language generated by the following grammar $G = (\{S, A, B\}, \{a, b\}, S, P)$ where P is

 $S
ightarrow Bb | \lambda$ $B
ightarrow bb B | \lambda$

Starting with S there are several possible derivations:

- Using the λ derivation: $S \Rightarrow \lambda$
- Using the *Bb* derivation:
 - $S \Rightarrow Bb \Rightarrow \lambda b = b$
 - $S \Rightarrow Bb \Rightarrow bbBb \Rightarrow bbb$
 - $S \Rightarrow Bb \Rightarrow bbBb \Rightarrow bbbbBb \Rightarrow bbbbb$
 - In general, $S \Rightarrow^* b(bb)^*$

 $L(G) = \{\lambda\} \cup \{b^{2n+1} : n \ge 0\}$

Exercise

Exercise. Determine L(G) and *prove* your answer. That is, if you claim that L(G) = L, show that this is the case. $G = (\{S\}, \{a, b\}, S, P)$ with P as

 $S \rightarrow aSb|aSbb|\lambda$

Types of grammars

The type of a grammar is determined by the form its production rules can take on.

- 1. Left-linear and right-linear grammars
- 2. Context-free grammars
- 3. Context-sensitive grammars
- 4. Unrestricted grammars

Regular grammars

Definition. A grammar G = (V, T, S, P) is **left-linear** if <u>each</u> of the production rules in *P* have one of the following forms:

 $A \to Bx$ $A \to x$

Where $A, B \in V$ and $x \in T^*$. Can you give a slightly more formal definition?

Example. The following is a left-linear grammar. What does it generate?

 $S
ightarrow Aa|\lambda$ A
ightarrow Sb **Definition.** A grammar G = (V, T, S, P) is **right-linear** if <u>each</u> of the production rules in *P* have either of the following forms:

 $A \to xB$ $A \to x$

Where $A, B \in V$ and $x \in T^*$.

Example. The following is a right-linear grammar. What does it generate?

 $S
ightarrow aA|\lambda$ A
ightarrow bS **Definition.** A grammar G is **regular** if it is either right-linear or left-linear.

Example. Is the following grammar left-linear? Right-linear? Regular?

 $S
ightarrow aaaA | \lambda$ $A
ightarrow abA | \lambda$ **Example.** Consider the grammar $G = \{V = \{S, A\}, T = \{a, b\}, S, P\}$ where *P* is

S
ightarrow aS|bS|abA $A
ightarrow aA|bA|\lambda$

G is a right-linear (and hence a regular) language.

Any string of the form $w_1abw_2, w_1, w_2 \in \{a, b\}^*$ can be generated by *G*. Suppose $w_1 = ba, w_2 = aa$:

 $S \Rightarrow bS \Rightarrow baS \Rightarrow baabaA \Rightarrow baabaA \Rightarrow baabaa$

G generates $L(G) = \{w \in \{a, b\}^* : w \text{ contains } ab \text{ as a substring } \}.$

Exercise

Exercise. Write a regular grammar that generates $L = \{w \in \{a, b\}^* : |w| \mod 2 = 0\}$

Linear grammars

Definition. A grammar G = (V, T, S, P) is linear if each of the production rules have the form $x \to y$ where $x \in V$ and $y \in T^* \cdot (V \cup \{\lambda\}) \cdot T^*$.

Example. The following is a linear grammar. What does it generate?

 $S
ightarrow aA|\lambda$ A
ightarrow Sb

Exercise. Are all linear grammars also regular? Are all regular grammars also linear?

Regular grammars and regular languages

Let $M = (Q, \Sigma, \delta, q_0, F)$ be an FA (either an NFA or a DFA). We want to create a right-linear grammar G = (V, T, S, P) such that L(G) = L(M). Let $V = Q, T = \Sigma, S = q_0$. Construct the production rules as follows:

- 1. For transitions of the form $\delta(q_i, \sigma) = q_j$, where $\sigma \in \Sigma$, create a production rule $q_i \to \sigma q_j$
- 2. For transitions like $\delta(q_i, \lambda) = q_j$, create a production rule $q_i \rightarrow q_j$
- 3. Create a production rule $q_j \rightarrow \lambda$ for $q_j \in S_f$

Exercise. Convert the following FA to a right-linear grammar.

Converting a right-linear grammar to an FA

Let G = (V, T, S, P) be a right-linear grammar. We want to create an FA $M = (Q, \Sigma, \delta, q_0, F)$ such that L(M) = L(G). Sketch of the procedure:

Exercise. Convert the following right-linear grammar to an equivalent FA.

 $S \rightarrow aA|a|cC|c|bB|b$ $A \rightarrow aA|a|bB|b$ $B \rightarrow bB|b$ $C \rightarrow cC|c|bB|b$ **Theorem.** Every regular language has a regular grammar that generates it and every regular grammar generates a regular language.¹

 $^{^1{\}rm This}$ theorem assumes a result about the relation between right-linear and left-linear grammars. Do you see what it is?