## Theory of Computation

Tutorial - Introduction to Grammars

Cesare Spinoso-Di Piano

## Plan for today

1. What's a grammar?
2. Grammar formalization
3. Types of grammars
4. Regular grammars
5. Linear grammars
6. Regular grammars and regular languages

## What's a grammar?

## What's a grammar?

## Grammar formalization

## Definition

Definition. A grammar is a 4-tuple $G=(V, T, S, P)$ where

- $V$ is a finite set of variables (upper case symbols)
- $T$ is a finite set of terminals (lower case symbols)
- $S$ is the (unique) start variable
- $P$ is a finite set of productions

Productions in $P$ have the form $x \rightarrow y$ where, in their most general form, $x \in(T \cup V)^{*}$ and $y \in(T \cup V)^{*}$.

## Example

Example. $G=(V=\{S, A, B\}, T=\{a, b\}, S, P)$ where $P$ is

$$
\begin{aligned}
& S \rightarrow A \mid \lambda \\
& A \rightarrow a \mid b b B a \\
& B \rightarrow b \mid \lambda
\end{aligned}
$$

## Derivations

Definition. If using a sequence of productions we can obtain $y$ from $x$ we say $x$ derives $y$ or $x \Rightarrow^{*} y$.
Example. From $G$ in the previous example,

$$
\begin{aligned}
& S \rightarrow A \mid \lambda \\
& A \rightarrow a \mid b b B a \\
& B \rightarrow b \mid \lambda
\end{aligned}
$$

the grammar $G$ can generate the string $b b b a$

$$
S \Rightarrow A \Rightarrow b b B a \Rightarrow b b b a \text { or we can write it as } S \Rightarrow^{*} b b b a
$$

## Grammars as language generators

Definition. A grammar $G=(V, T, S, P)$ is said to generate a language $L(G)$ which is defined as $L(G)=\left\{w \in T^{*}: S \Rightarrow^{*} w\right\}$.

Example. From $G$ in the previous example,

$$
\begin{aligned}
& S \rightarrow A \mid \lambda \\
& A \rightarrow a \mid b b B a \\
& B \rightarrow b \mid \lambda
\end{aligned}
$$

we have

- $S \Rightarrow \lambda$
- $S \Rightarrow A \Rightarrow a$
- $S \Rightarrow A \Rightarrow b b B a \Rightarrow b b a$
- $S \Rightarrow A \Rightarrow b b B a \Rightarrow b b b a$

$$
L(G)=\{\lambda, a, b b a, b b b a\}
$$

## Exercise

Exercise. What is the language generated by the following grammar $G=(\{S, A, B\},\{a, b\}, S, P)$ where $P$ is

$$
\begin{aligned}
& S \rightarrow B b \mid \lambda \\
& B \rightarrow b b B \mid \lambda
\end{aligned}
$$

Starting with $S$ there are several possible derivations:

- Using the $\lambda$ derivation: $S \Rightarrow \lambda$
- Using the $B b$ derivation:
- $S \Rightarrow B b \Rightarrow \lambda b=b$
- $S \Rightarrow B b \Rightarrow b b B b \Rightarrow b b b$
- $S \Rightarrow B b \Rightarrow b b B b \Rightarrow b b b b B b \Rightarrow b b b b b$
- In general, $S \Rightarrow^{*} b(b b)^{*}$
$L(G)=\{\lambda\} \cup\left\{b^{2 n+1}: n \geq 0\right\}$


## Exercise

Exercise. Determine $L(G)$ and prove your answer. That is, if you claim that $L(G)=L$, show that this is the case. $G=(\{S\},\{a, b\}, S, P)$ with $P$ as

$$
S \rightarrow a S b|a S b b| \lambda
$$

## Types of grammars

## Types of grammars

The type of a grammar is determined by the form its production rules can take on.

1. Left-linear and right-linear grammars
2. Context-free grammars
3. Context-sensitive grammars
4. Unrestricted grammars

Regular grammars

## Left-linear grammars

Definition. A grammar $G=(V, T, S, P)$ is left-linear if each of the production rules in $P$ have one of the following forms:

$$
\begin{aligned}
& A \rightarrow B x \\
& A \rightarrow x
\end{aligned}
$$

Where $A, B \in V$ and $x \in T^{*}$. Can you give a slightly more formal definition?

Example. The following is a left-linear grammar. What does it generate?

$$
\begin{aligned}
& S \rightarrow A a \mid \lambda \\
& A \rightarrow S b
\end{aligned}
$$

## Right-linear grammars

Definition. A grammar $G=(V, T, S, P)$ is right-linear if each of the production rules in $P$ have either of the following forms:

$$
\begin{aligned}
& A \rightarrow x B \\
& A \rightarrow x
\end{aligned}
$$

Where $A, B \in V$ and $x \in T^{*}$.
Example. The following is a right-linear grammar. What does it generate?

$$
\begin{aligned}
& S \rightarrow a A \mid \lambda \\
& A \rightarrow b S
\end{aligned}
$$

## Regular grammars

Definition. A grammar $G$ is regular if it is either right-linear or left-linear.

Example. Is the following grammar left-linear? Right-linear? Regular?

$$
\begin{aligned}
& S \rightarrow \text { aaa } A \mid \lambda \\
& A \rightarrow a b A \mid \lambda
\end{aligned}
$$

## Example

Example. Consider the grammar $G=\{V=\{S, A\}, T=\{a, b\}, S, P\}$ where $P$ is

$$
\begin{aligned}
& S \rightarrow a S|b S| a b A \\
& A \rightarrow a A|b A| \lambda
\end{aligned}
$$

$G$ is a right-linear (and hence a regular) language.
Any string of the form $w_{1} a b w_{2}, w_{1}, w_{2} \in\{a, b\}^{*}$ can be generated by $G$. Suppose $w_{1}=b a, w_{2}=a a$ :

$$
S \Rightarrow b S \Rightarrow b a S \Rightarrow \text { baab } A \Rightarrow \text { baaba } A \Rightarrow \text { baabaa }
$$

$G$ generates $L(G)=\left\{w \in\{a, b\}^{*}: w\right.$ contains $a b$ as a substring $\}$.

## Exercise

Exercise. Write a regular grammar that generates
$L=\left\{w \in\{a, b\}^{*}:|w| \bmod 2=0\right\}$

Linear grammars

## Linear grammars

Definition. A grammar $G=(V, T, S, P)$ is linear if each of the production rules have the form $x \rightarrow y$ where $x \in V$ and $y \in T^{*} \cdot(V \cup\{\lambda\}) \cdot T^{*}$.

Example. The following is a linear grammar. What does it generate?

$$
\begin{aligned}
& S \rightarrow a A \mid \lambda \\
& A \rightarrow S b
\end{aligned}
$$

Exercise. Are all linear grammars also regular? Are all regular grammars also linear?

Regular grammars and regular languages

## Converting an FA to a right-linear grammar

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an FA (either an NFA or a DFA). We want to create a right-linear grammar $G=(V, T, S, P)$ such that $L(G)=L(M)$. Let $V=Q, T=\Sigma, S=q_{0}$. Construct the production rules as follows:

1. For transitions of the form $\delta\left(q_{i}, \sigma\right)=q_{j}$, where $\sigma \in \Sigma$, create a production rule $q_{i} \rightarrow \sigma q_{j}$
2. For transitions like $\delta\left(q_{i}, \lambda\right)=q_{j}$, create a production rule $q_{i} \rightarrow q_{j}$
3. Create a production rule $q_{j} \rightarrow \lambda$ for $q_{j} \in S_{f}$

## Exercise

Exercise. Convert the following FA to a right-linear grammar.


## Converting a right-linear grammar to an FA

Let $G=(V, T, S, P)$ be a right-linear grammar. We want to create an FA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=L(G)$. Sketch of the procedure:

## Exercise

Exercise. Convert the following right-linear grammar to an equivalent FA.

$$
\begin{aligned}
& S \rightarrow a A|a| c C|c| b B \mid b \\
& A \rightarrow a A|a| b B \mid b \\
& B \rightarrow b B \mid b \\
& C \rightarrow c C|c| b B \mid b
\end{aligned}
$$

## Equivalence between regular grammars and FAs

Theorem. Every regular language has a regular grammar that generates it and every regular grammar generates a regular language. ${ }^{1}$

[^0]
[^0]:    ${ }^{1}$ This theorem assumes a result about the relation between right-linear and left-linear grammars. Do you see what it is?

