Theory of Computation

Tutorial - Languages

Cesare Spinoso-Di Piano

Plan for today

1. Languages

Languages

Definitions

Definition. An alphabet Σ is a finite set of symbols. It must contain at least one symbol.

Example 1. $\Sigma=\{a, b, \ldots, z\}$
Definition. A string is a sequence of symbols from a given alphabet Σ.
Example 2. Given $\Sigma=\{a, b\}, w=a b b a$ is a well-defined string over Σ, but $v=$ acb is not.

Definition. A language L is a set of strings defined over an alphabet Σ.
Example 3. Given $\Sigma=\{a, b\}, L=\{a, a a, a a b\}$ is a finite language.
Example 4. Given $\Sigma=\{a, b\}, L=\left\{a^{n}: n>1\right\}$ is an infinite language.

Operations on strings

Given strings $w=a_{1} a_{2} \ldots a_{n}$ and $v=b_{1} b_{2} \ldots b_{m}$ defined over Σ, define the following string operations

String concatenation: $w v=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{m}$
String reversal: $w^{R}=a_{n} \ldots a_{2} a_{1}$
String length: The number of characters in a string. $|w|=n$ and $|v|=m$

Empty string

Definition. The empty string λ (also ε) is defined as the string with length $0 .|\lambda|=0$. Equivalent to " in Java/Python.

Example 1. What is $\lambda^{R}=$?

Example 2. What is $w \lambda$ for any string w ?

More operations on strings

Definition. For every string $v=b_{1} b_{2} \ldots b_{m}$ defined over Σ, $v^{n}=\underbrace{v \cdot v \cdot \ldots \cdot v}_{\mathrm{n} \text { times }}$.

Example 1. What is $v^{0}=$?
Example 2. $w=a b, v=b a . w^{2} v^{2} w^{0}=$?

Substring

Definition. A string z is a substring of a string w if it appears consecutively within w.

Example 1. Let $w=a b a a$, what are its possible substrings?
Example 2. Given a string w of length n, how many substrings will it have?

Prefix and suffix

Definition. A string x is a prefix of w if there exists a string z such that $w=x z$.

Definition. A string x is a suffix of w if there exists a string z such that $w=z x$.

Example 1. Let $w=a b b a a$, what are the prefixes and suffixes of w ?
Example 2. True or False. For any string w there is exactly one substring x that is both a prefix and a suffix.

Example 3. Let w be a string of length n, how many prefixes will w have?

Operations on languages

Definition. The union, intersection and difference of languages can be applied as set operations.

$$
\text { Example 1. Given } \Sigma=\{a, b\}, L_{1}=\{a, a b, a b a b\}
$$

$$
\begin{gathered}
L_{2}=\left\{(a b)^{n}: n \geq 0\right\}, \text { what is: } \\
L_{1} \cup L_{2}= \\
L_{1} \cap L_{2}= \\
L_{1}-L_{2}= \\
L_{2}-L_{1}=
\end{gathered}
$$

Operations on languages - Continued

Definition. The reverse of a language is defined as $L^{R}=\left\{w^{R}: w \in L\right\}$.
Example 2. Given $L_{1}=\{a, a b, a b a b\}, L_{2}=\left\{(a b)^{n}: n \geq 0\right\}$.
What is $L_{1}^{R}=$

What is $L_{2}^{R}=$

Operations on languages - Continued

Definition. Given L_{1}, L_{2} the language concatenation $L_{1} L_{2}$ is defined as $\left\{w v: w \in L_{1}, v \in L_{2}\right\}$ (like the cross-product of two sets).

Example 1. Given $L_{1}=\{a\}, L_{2}=\left\{a^{n}: n \geq 0\right\}$, what is:

$$
\begin{aligned}
& L_{1} L_{2}= \\
& L_{2} L_{1}=
\end{aligned}
$$

Example 2. In general, for two languages L_{1}, L_{2}, is $L_{1} L_{2}=L_{2} L_{1}$?

Operations on languages - Continued

Definition. Given a language L, define $L^{n}=\underbrace{L L \ldots L}_{\mathrm{n} \text { times }}$.
Example 1. Let $L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$. What is L_{1}^{2} ?

Example 2. What is $L^{0}=$? Give some intuition behind this.

Operations on languages - Continued

Definition. Given a language L, the star-closure of L, denoted by L^{*}, is defined as the following language: $L^{*}=L^{0} \cup L \cup L^{2} \cup L^{3} \cup \ldots$

Example 1. Given $\Sigma=\{a, b\}$, what is the set of all possible strings over Σ ? .

Example 2. Given $L_{4}=\{a, a b\}$ how many strings of length 0,1 and 2 are there in L_{4}^{*} ? What are those strings?

Operations on languages - Continued

Defintion. Given a language L, the positive-closure is defined as $L^{+}=L^{1} \cup L^{2} \cup L^{3} \cup \ldots$

Example 1. Given $L_{4}=\{a, a b\}$, what is the shortest string in L_{4}^{+}?

Example 2. True or False. $L^{+}=L^{*}-\{\lambda\}$?

Three very important languages

Three languages that we will OFTEN see/use in the proofs/counter-examples: $\emptyset,\{\lambda\}, \Sigma^{*}$.

Example 1. Given $L=\{a, a b\}$ over $\Sigma=\{a, b\}$. How do we define \bar{L} ?

Example 2. What is $L \emptyset$?

Example 3. What is \emptyset^{0} ?

Example 4. What is \emptyset^{*} ?

Exercises

Let $L_{1}=\left\{a^{n} b^{n+1}: n \geq 0\right\}, L_{2}=\left\{a^{n}: n \bmod 2=0\right\}$ then:
a. $L_{1}-L_{2}=$?
b. $\Sigma^{*} \cup L_{1}^{R} \overline{L_{2}}\{\lambda\}=$?
c. What is the shortest string in $L_{1}^{0}\{a, b\} \emptyset$?

Exercises - Continued

d. Find languages L_{1}, L_{2} such that $L_{1} L_{2}=L_{1}$?
e. Find a language L such that $L^{*}=L$?

Exercises - Continued

f. True or False. $\left|L \cup L^{2}\right|=|L|+\left|L^{2}\right|$.
g. True or False. $\left|L \cup L^{2}\right| \leq|L|+\left|L^{2}\right|$.

