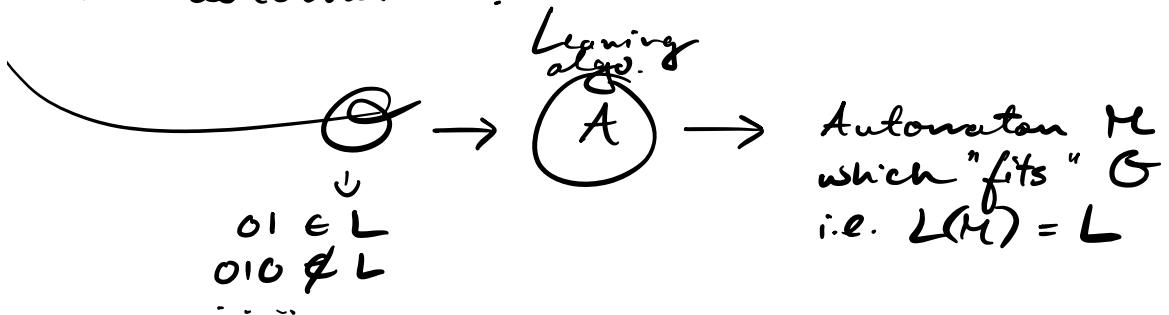


Comp 330 - Tutorial 6 - Recsdecl

Learning automata

Q: How do I design a learning algorithm which by observing string membership can automatically generate an automaton?



Recall that in the automata theory portion of 330, the "classic" question/exercise is something like:

Given $L \subseteq \Sigma^*$, where L is described using set builder notation i.e. using a predicate function where $P(w) \Leftrightarrow w \in L$, we would ask to design an automaton M which accepted L .

Ex $L_1 = \{ \omega \in \{a, b\}^* : \omega \text{ is a palindrome} \}$

The general strategy to design a PDA M s.t. $L(M) = \Sigma$, would be to implement, using the PDA architecture, the logic of $\Phi(\omega)$.

($\overbrace{abb, bb}$ a
aba intuition to
design my Pdt.

Then I conclude that L_1 is CF,
& that the logic of P is implementable
using a PDA.

What if L is not described using $P(w)$ (or maybe P is too complicated), but rather we are given string membership test to L .

O Observation Table Unknown lang
(i.e. no $P(w)$)

String	Membership to L
ϵ	1
a	0
b	1
aa	0
:	:

$T(w) = 1 \Leftrightarrow w \in L$
according to \mathcal{O}

$\rightarrow \mathcal{A}$ $\rightarrow M$ s.t.
 $L(M) = \{ w : T(w) \}$
"1"

learning algorithm

We will study a learning algorithm \mathcal{A} (from late 80s) where we assume L is unknown (i.e. no $P(w)$ / $P(w)$ is too complicated) AND regular. \therefore The automata which \mathcal{A} will produce will be DFA. TODO
minimal \rightarrow fix this to just say DFA

Active learning algorithm

Given some unknown regular language L , we assume that we are interfacing with a teacher T which can give us feedback on the output of A .

$\emptyset \rightarrow A \rightarrow M'$, candidate DFA

① $M' \rightarrow T \rightarrow$ yes, $L(M') = L$ &
 M' is min
→ No, M' is not
correct +
counterexample
false negative $w \in \underbrace{L - L(M')}_{L(M') - L}$

false positive

② $w \rightarrow T \rightarrow y, w \in L$
→ $N, w \notin L$.

Why not just use T ?

Ex You're a ML engineer & want to design a classifier (DFA) which checks whether a research article w is interesting / proposes novel research idea. Imagine you're designing an expert system \Rightarrow program w/ a collection of if-then-else statements. You go to an expert researcher : 1. Really good at classifying interesting papers 2. Has some intuition on what makes a paper interesting. How do you design the system based on expert researcher (T)?

Description of the L^* alg. for active learning of regular languages

Observation table \mathcal{O} , 2D array

$\Sigma \neq \emptyset$, $L \subseteq \Sigma^*$, \mathcal{O} : $S \subseteq \Sigma^*$ $\xrightarrow{\text{rows}}$
 $\xleftarrow[\text{unknown}]{\text{cols}}$ $E \subseteq \Sigma^*$ $\xrightarrow{\text{columns}}$

\mathcal{O} : $\overbrace{(S \cup S \cdot \Sigma)}^{\text{rows}} \times \overbrace{E}^{\text{cols}} \rightarrow \{0, 1\}$
where $\mathcal{O}(s, e) = \text{if } T(s \cdot e) \text{ then } 1 \text{ else } 0$

$s \in S \cup S \cdot \Sigma$ $e \in E$ \Leftrightarrow teacher $T(w) = 1$

$\mathcal{I}_1 \leftarrow \{s \mid L \subseteq S\}$ $\mathcal{F} \leftarrow \{s \mid \dots\}$

$\Sigma = \{a, b\} \cup \{\epsilon, \cdot\}$

$$\text{rows of } G = \{\epsilon, b\} \cup \{\epsilon, b\} \cdot \{a, b\}$$

$$= \{\epsilon, b, a, ba, bb\}$$

$$\text{cols of } G = \{\epsilon, a, aa\}$$

G	ϵ	a	aa
S	ϵ		
\cup	b		
$S \cdot \Sigma$	a		
	ba		
	bb	$\text{bb} \cdot \epsilon$	

$T(bb \cdot aa) \neq 1 \Leftrightarrow ba \notin L$

$bb \notin L$

Example of G

	ϵ	a	ϵ
S	0	0	$\text{row}(\epsilon) = 00$
a	0	1	
aa	1	0	$\text{row}(aa) = 10$
$S \cdot \Sigma$	b	0	$T(b \cdot a) = 0$
	ab	0	$\Leftrightarrow ba \notin L$
	aaa	0	
	aab	10	$\text{row}(aab) = 00$

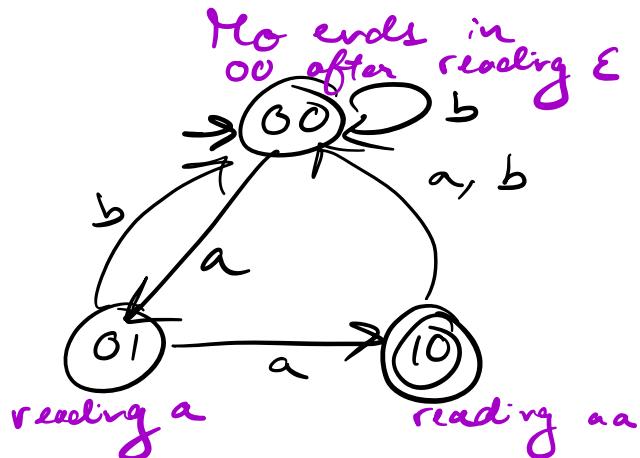
How do we construct a DFA from Θ^* ? \Rightarrow Assuming Θ satisfies some "nice" properties which allow us to create a corresponding DFA.

States of $M_\Theta = (Q, \Sigma, \delta, q_0, F)$

$$\begin{aligned}
 Q &:= \{ \text{row}(s) : s \in S \} \\
 q_0 &:= \text{row}(\epsilon) \\
 F &:= \{ \text{row}(s) : s \in S, \\
 &\quad T(s, \epsilon) \in \Theta^*, \\
 &\quad \Theta(s, \epsilon) \in L \}
 \end{aligned}$$

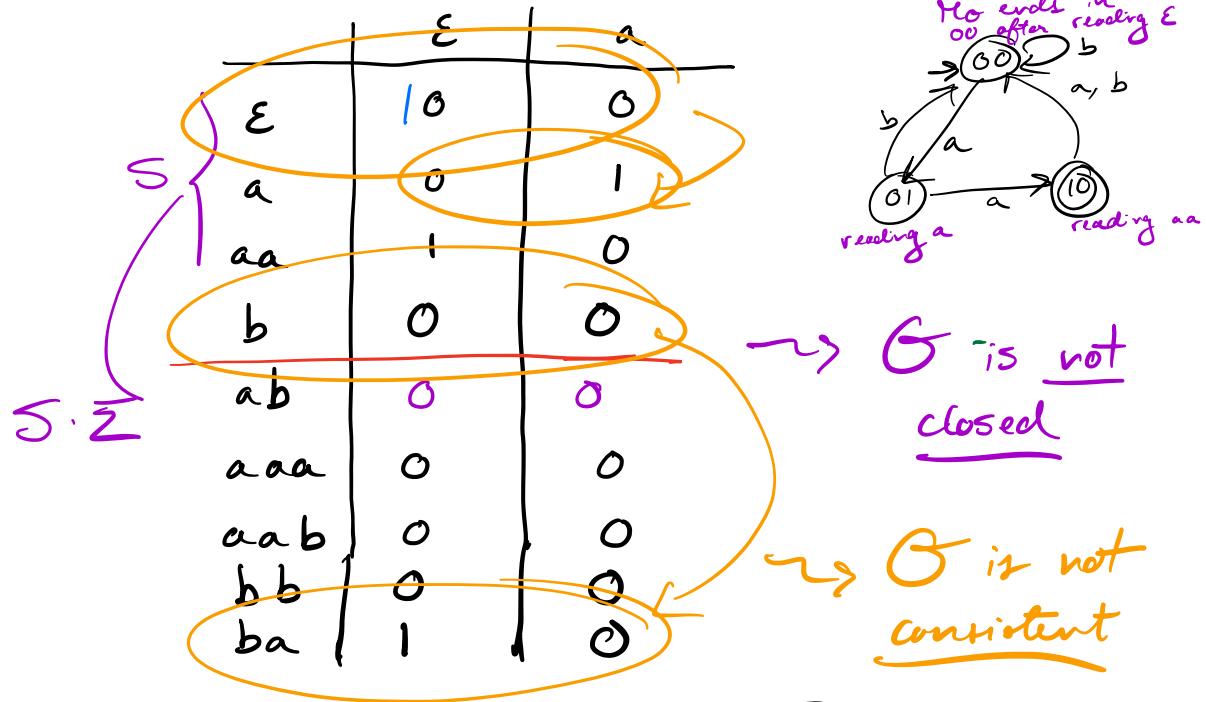
		Σ	
		ϵ	a
$\text{row}(s)$	ϵ	0	0
	a	0	1
$\text{row}(s)$	aa	1	0
	b	0	0
$\text{row}(s)$	ab	0	0
	aaa	0	0
$\text{row}(s)$	aab	0	0
	0	0	0

$$\begin{aligned}
 \downarrow & \\
 T(s, \epsilon) &= T(s) = 1 \\
 \Leftrightarrow & \\
 s &\in L
 \end{aligned}$$



$\} \quad \text{DFA}$
 M_Θ induced by Θ^*

Special properties of Θ :



Def Θ is closed if [Prevent undefined transitions]

$\forall t \in S \cdot \Sigma \exists s \in S$ s.t.

$$\text{row}(t) = \text{row}(s)$$

Def Θ is consistent if [Ensures that Θ "behaves" like a DFA]

$\forall s_1, s_2 \in S$ if $\text{row}(s_1) = \text{row}(s_2)$

$$\Rightarrow \forall \sigma \in \Sigma$$

$$\text{row}(s_1 \cdot \sigma) = \text{row}(s_2 \cdot \sigma)$$

An example run of the L^* alg

0. Initial \mathcal{G}_0 , $S = E = \{\epsilon\}$
 $\Sigma = \{a, b\}$

		ϵ		—
		ϵ	1	
$S\}$	ϵ	1	—	—
	a	0		
$S \cdot \Sigma\}$	b	0	—	—
	aa	1		
$S \cdot \Sigma\}$	ab	0	—	—

Is \mathcal{G}_0 closed? Is \mathcal{G}_0 consistent?

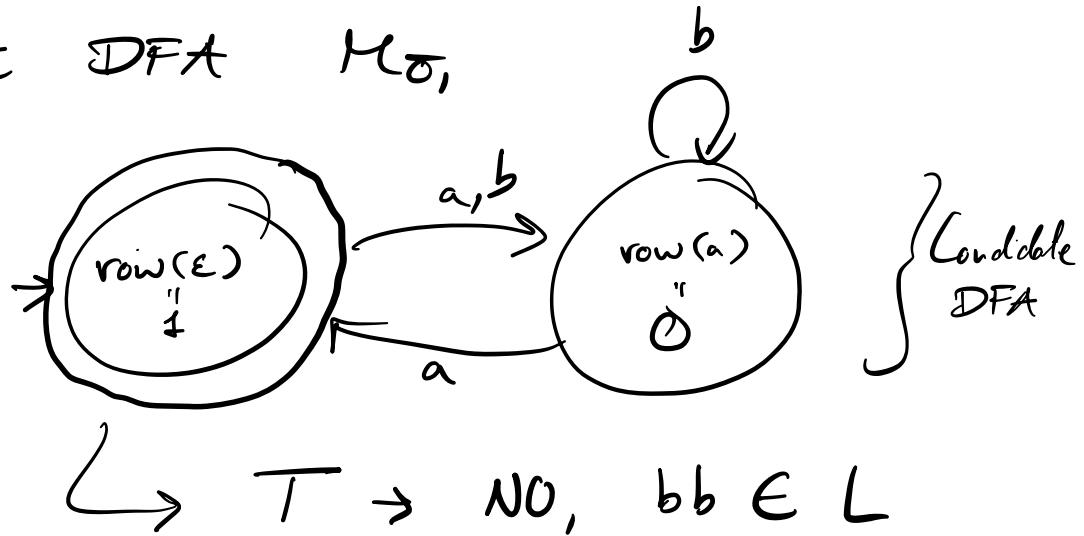
\mathcal{G}_0 is not closed, b/c $\text{row}(a) = 0 \notin \{\text{row}(s) : s \in S\}$
 $\{\text{row}(s) : s \in S\}$
 $\{\epsilon\}$

When \mathcal{G}_0 is not closed, $S \leftarrow S \cup \{a\}$

1. \mathcal{G}_1 where $E = \{\epsilon\}$ $S = \{\epsilon, a\}$
 $S \cdot \Sigma$

		ϵ	—
$S\}$	ϵ	1	
	a	0	—
$S \cdot \Sigma\}$	b	0	
	aa	1	
$S \cdot \Sigma\}$	ab	0	—
		<th data-kind="ghost"></th>	

Create DFA Mo,



How do I integrate counterexamples from T ?

$$\omega = \omega_1 \omega_2 \dots \omega_n$$

counter-example string

$\{E, b, bb\}$

Then $S \leftarrow S \cup \text{prefixes}(bb)$

2. \mathcal{G}_2 where $S = \{e, a, b, bb\}$ $E = \{e\}$

	ϵ
ϵ	1
a	0
b	0
bb	1
aa	1
ab	0
ba	0
bba	0
bbb	0

NEW!

Is \mathcal{G}_2 closed?

Yes

Is \mathcal{G}_2 consistent?

No! $\text{row}(a \cdot a \cdot \epsilon) = 1$

but $\text{row}(b \cdot a \cdot \epsilon) = 0$

Add $a \cdot \epsilon$ to E , $E \leftarrow E \cup \{a \cdot \epsilon\}$

3. Create \mathcal{G}_3 from \mathcal{G}_2
 $E = \{\epsilon, a\}$

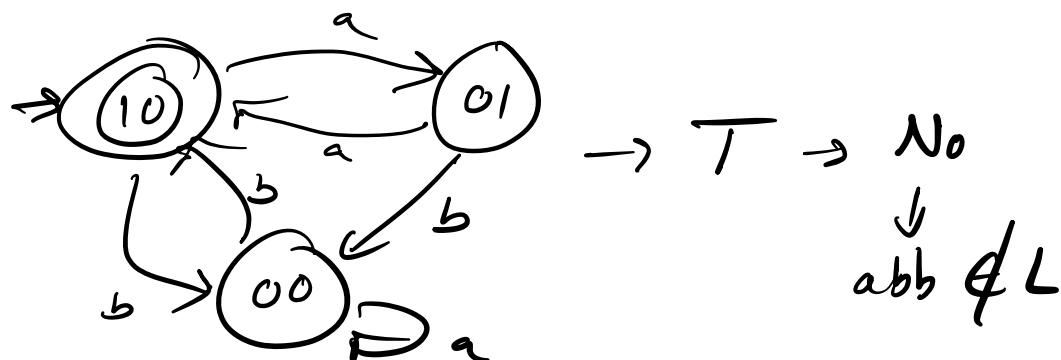
\mathcal{G}_3

	ϵ	a
ϵ	1	0
a	0	1
b	0	0
bb	1	0
aa	1	0
ab	0	0
ba	0	0
bb a	0	0
bbb	0	0

$T(aa \cdot a)$

Is \mathcal{O}_3 closed? Consistent?
 Yes Yes

$M_{\mathcal{O}_3} \rightarrow$ Candidate DFA



$S \leftarrow S \cup \text{prefixes}(abb)$
 $\{ \epsilon, a, ab, abb \}$

$$1. \quad S \leftarrow S \cup \text{prefixes}(abb)$$

$$E \leftarrow \{ \epsilon, a \}$$

β_1

	ϵ	a
$\checkmark \epsilon$	1	0
$\checkmark a$	0	1
$\checkmark b$	0	0
$\checkmark bb$	1	0
ab	0	0
$\checkmark abb$	10	1
aa	1	0
ba	0	0
bba	0	1
bbb	0	0
abba	1	0
abb b	0	0
aba	0	0

Is β_1 closed?

Yes

Is β_1 consistent?

Inconsistent

$$\text{b/c } \text{row}(b) = 00 \quad \text{row}(ab) = 00$$

$$\text{but } \text{row}(bb) = 10 \neq \text{row}(abb) = 01$$

↳ The first place that rows differ is

$$\textcircled{C} \quad T(bbb|\Sigma) \neq T(abbb|\Sigma)$$

initial
string from S

$b|\Sigma$

final
distinguishing
string

Add the string $b|\Sigma$ to E

$$E \leftarrow E \cup \{b|\Sigma\}$$

5. Construct Θ_S

	ϵ	a	b
ϵ	1	0	0
a	0	1	0
b	0	0	1
bb	1	0	0
ab	0	0	0
abb	0	1	0
aa	1	0	0
ba	0	0	0
bba	0	1	0
bbb	0	0	1
abba	1	0	0
abbb	0	0	0
aba	0	0	1

Closed!
Consistent!