# Theory of Computation <br> Tutorial - Minimal DFAs 

Cesare Spinoso-Di Piano

## Plan for today

## 1. Minimal DFA

Minimal DFA

## Minimal DFA

Given a language $L$, there are several DFAs $\mathbf{M}$ that can accept it.
Theorem. For every regular language $L$, there is a unique minimal DFA $\hat{M}$ that accepts it. $\hat{M}$ is minimal in the sense that no other DFA $M$ where $L(M)=L$ has a smaller number of states.

## State Reduction Algorithm

The following procedure takes as input any DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and outputs an equivalent minimal DFA $\hat{M}=\left(\hat{Q}, \Sigma, \hat{\delta}, \hat{q}_{0}, \hat{F}\right)$ (i.e. $L(M)=L(\hat{M}))$.

Step 1. Remove all unreachable states from M.
Step 2. Initialize two sets $S_{1} \leftarrow Q-F$ and $S_{2} \leftarrow F$.
Step $j,(j>2)$. For each pair $p, q \in S_{i}$
If $\delta(p, \sigma) \& \delta(q, \sigma)$ map to the same set $\forall \sigma \in \Sigma$, then $p, q$ are indistinguishable and stay in the same set they were in Step $j-1$.
Otherwise, $p, q$ are distinguishable, split the set from Step $j-1$ into two new sets one with $p$ and another with $q$. These sets may continue to grow.
If no new sets have been created from $j-1$ to $j$, end.
Otherwise, continue.
$\hat{M}$ : Each set $S$ becomes a state in $\hat{Q}$. $\hat{q}_{0}$ is the set $S$ that contains
$q_{0} . \hat{F}$ are the sets that contain at least one final state from $F$.

## Example

Example 1. Reduce the following DFA M


## Example

## Example 1.

Step 1: Remove all unreachable states from M.
Step 2: Initialize two sets $S_{1} \leftarrow\left\{q_{0}, q_{1}, q_{3}\right\}, S_{2} \leftarrow\left\{q_{2}, q_{4}\right\}$


## Example

## Example 1.

Step j: Distinguishable and indistinguishable states

$$
\begin{aligned}
& \rightarrow\left\{q_{0}, q_{1}, q_{3}\right\},\left\{q_{2}, q_{4}\right\} \\
& \rightarrow\left\{q_{0}\right\}\left\{q_{1}\right\}\left\{q_{3}\right\}\left\{q_{2}, q_{4}\right\} \\
& \rightarrow\left\{q_{0}\right\}\left\{q_{1}\right\}\left\{q_{3}\right\}\left\{q_{2}, q_{4}\right\}
\end{aligned}
$$

No change from previous step, states have been identified.


## Example

## Example 1.

Create $\hat{M}$ : Each set $S$ becomes a state in $\hat{Q} . \hat{q}_{0}$ is the set $S$ that contains $q_{0} . \hat{F}$ are the sets that contain at least one final state from $F$.


## Exercise

Exercise 1. Minimize the DFA
$M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\},\{0,1\}, \delta, q_{0},\left\{q_{2}, q_{5}\right\}\right)$. Where $\delta$ is given as:

| $\delta$ | 0 | 1 |
| :---: | :---: | :---: |
| $q_{0}$ | $q_{1}$ | $q_{3}$ |
| $q_{1}$ | $q_{1}$ | $q_{4}$ |
| $q_{2}$ | $q_{0}$ | $q_{2}$ |
| $q_{3}$ | $q_{3}$ | $q_{2}$ |
| $q_{4}$ | $q_{4}$ | $q_{5}$ |
| $q_{5}$ | $q_{0}$ | $q_{2}$ |

