Theory of Computation

Tutorial - Minimal DFAs

Cesare Spinoso-Di Piano

1. Minimal DFA

Minimal **DFA**

Given a language L, there are several DFAs **M** that can accept it.

Theorem. For every regular language L, there is a unique minimal DFA \hat{M} that accepts it. \hat{M} is minimal in the sense that no other DFA M where L(M) = L has a smaller number of states.

The following procedure takes as input any DFA $M = (Q, \Sigma, \delta, q_0, F)$ and outputs an equivalent minimal DFA $\hat{M} = (\hat{Q}, \Sigma, \hat{\delta}, \hat{q}_0, \hat{F})$ (i.e. $L(M) = L(\hat{M})$).

Step 1. Remove all unreachable states from M.

Step 2. Initialize two sets $S_1 \leftarrow Q - F$ and $S_2 \leftarrow F$.

Step j, (j > 2). For each pair $p, q \in S_i$

If $\delta(p,\sigma) \& \delta(q,\sigma)$ map to the same set $\forall \sigma \in \Sigma$, then p, q are indistinguishable and stay in the same set they were in Step i-1.

Otherwise, p, q are distinguishable, split the set from Step j - 1 into two new sets one with p and another with q. These sets may continue to grow.

If no new sets have been created from j - 1 to j, end.

Otherwise, continue.

 \hat{M} : Each set S becomes a state in \hat{Q} . \hat{q}_0 is the set S that contains q_0 . \hat{F} are the sets that contain at least one final state from F.

Example 1. Reduce the following DFA M

Example 1.

Step 1: Remove all unreachable states from M.

Step 2: Initialize two sets $S_1 \leftarrow \{q_0, q_1, q_3\}$, $S_2 \leftarrow \{q_2, q_4\}$

Example 1.

Step j: Distinguishable and indistinguishable states

$$\begin{array}{l} \rightarrow \{q_0, q_1, q_3\}, \{q_2, q_4\} \\ \rightarrow \{q_0\}\{q_1\}\{q_3\}\{q_2, q_4\} \\ \rightarrow \{q_0\}\{q_1\}\{q_3\}\{q_2, q_4\} \end{array}$$

No change from previous step, states have been identified.

Example 1.

Create \hat{M} : Each set *S* becomes a state in \hat{Q} . \hat{q}_0 is the set *S* that contains q_0 . \hat{F} are the sets that contain at least one final state from *F*.

Exercise

Exercise 1. Minimize the DFA

 $M = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_0, \{q_2, q_5\}).$ Where δ is given as:

δ	0	1
q_0	q_1	q 3
q_1	q_1	q_4
q ₂	q_0	q_2
<i>q</i> ₃	<i>q</i> ₃	q_2
q_4	q_4	q_5
q_5	q_0	q_2