
Theory of Computation

Tutorial - The Myhill-Nerode Theorem

Guest lecture delivered by Cesare Spinoso-Di Piano

Material developed by Prof. Prakash Panangaden

Plan for today

1. Motivation (1)

2. Definitions and lemmas

3. The Myhill-Nerode Theorem

4. Motivation (2)

5. Connection with minimal DFAs

1

Motivation (1)

What you’ve seen so far

Σ ̸= ∅, L ⊆ Σ∗ is regular if and only if

2

How do we prove a language is not regular?

3

When the PL fails...

Show that the language L = {aibjck : if i = 1 then j = k} is not regular.

4

Is all hope lost?

No!

Use closure properties.

Use the Myhill-Nerode Theorem (today).

5

Definitions and lemmas

Recall - String concatenation

Definition (String concatenation). Let Σ ̸= ∅, x , y ∈ Σ∗. The string

concatenation written either as xy or x · y is the operation of appending

the string y to the string x .

Example. Σ = {a, b, c , . . . , z}, x = cat, y = dog then x · y = catdog .

Properties of concatenation.

Associativity

Unit element

Together with a (non-empty) alphabet, the string concatenation forms a

monoid. 6

Monoid

Definition (Monoid). A monoid is a set S with a binary associative

operation and an identity element for this operation. Sometimes denoted

as the triple (S , ·, e).

Examples.

(N,+, 0)

(Σ ̸= ∅, ·, ϵ)

(S → S , ◦, id)

7

Recall - Equivalence relations

Definition (Equivalence relation). Given the set X , the relation X × X

is an equivalence relation if it is reflexive, symmetric and transitive.

Definition (Equivalence class). Given the set X , the equivalence

class of x ∈ X for the equivalence relation R is the set

[x] := {y ∈ X : xRy}. The set of equivalence classes is denoted X/R.

Definition (Index of an equivalence relation). Given the set X , the

number of equivalence classes for the equivalence relation R is called the

index of R.

Example. X = Z, ∀x , y ∈ X , xRy ⇐⇒ x mod 5 = y mod 5. What is

the index of R?

8

When concatenation and equivalence relations interact

Definition (Right invariance). An equivalence relation R on Σ∗ is said

to be right-invariant if

∀x , y ∈ Σ∗, xRy ⇒ ∀z ∈ Σ∗, xzRyz

That is, if a pair of strings are related and we stick a string to the right

of each of them, then this new pair of strings will also be related. And

this will hold for any string used to stick to the original pair of strings.

9

The “extended” transition function δ∗

For a DFA M = (Q,Σ, q0, δ,F) we defined δ∗ : Q × Σ∗ → Q inductively

as

∀q ∈ Q, δ∗(q, ϵ) = q and ∀a ∈ Σ, x ∈ Σ∗, δ∗(q, ax) = δ∗(δ(q, a), x)

You can show by induction (on the length of the string) that

∀x , y ∈ Σ∗, δ∗(q, xy) = δ∗(δ∗(q, x), y)

10

δ∗ as an equivalence relation

Definition (RM). For a fixed DFA M = (Q,Σ, q0, δ,F), define the

relation on Σ∗, denoted RM , as follows

∀x , y ∈ Σ∗, xRMy ⇐⇒ δ∗(q0, x) = δ∗(q0, y)

That is, for a given DFA M, two strings are related if M ends at the

same state when reading both of them.

Claim 1. RM is an equivalence relation. Why?

Claim 2. RM is a right-invariant equivalence relation.

Proof.

This right-invariant equivalence relation will come in handy in a few

slides from now.

11

Another very familiar equivalence relation

This equivalence relation will be based on ANY language (not just

regular languages).

Definition. Given any language L ⊆ Σ∗, we define a relation ≡L on Σ∗

as follows

x ≡L y ⇐⇒ ∀z ∈ Σ∗, xz ∈ L ⇐⇒ yz ∈ L

Claim 1. ≡L is an equivalence relation. Prove it!

Claim 2. For any two related strings x , y , they are either both in L or

neither of them is in L. Why?

Example. Σ = {0, 1}, L = {w ∈ Σ∗ : |w | mod 2 = 0}

0 ≡L 00?

10 ≡L 01?

12

A consequential lemma

Lemma. The equivalence relation ≡L is right-invariant.

Proof.

This lemma will be crucial in the proof of the following theorem.

13

The Myhill-Nerode Theorem

The main theorem

Theorem (Myhill-Nerode). The following three statements are

equivalent:

(1) The language L is accepted by a DFA.

(2) The language L is equal to the union of some equivalence classes for

some right-invariant equivalence relation of finite index.

(3) The equivalence relation ≡L has finite index. In fact, any

right-invariant equivalence relation R with the property that L is the

union of some of the equivalence classes of R will have index greater

than ≡L. (This will come in handy when proving uniqueness of

minimality.)

What is the theorem telling us?

We will prove this by showing (1) ⇒ (2), (2) ⇒ (3), (3) ⇒ (1).

14

Proof - (1) ⇒ (2)

Statement: The language L is accepted by a DFA. ⇒ The language L is

equal to the union of some equivalence classes for some right-invariant

equivalence relation of finite index.

15

Proof - (2) ⇒ (3)

Statement: The language L is equal to the union of some equivalence

classes for some right-invariant equivalence relation of finite index. ⇒
The equivalence relation ≡L has finite index. (Plus some other stuff)

16

Proof - (3) ⇒ (1)

Statement: The equivalence relation ≡L has finite index. ⇒ The

language L is accepted by a DFA.

17

Motivation (2)

Who cares?

Recall(!) the language L = {aibjck : if i = 1 then j = k}. We can use

M-N to easily prove that L is not regular.

How?

1. Pick an infinite set of strings S

2. Show that ∀x , y ∈ S , x ̸= y ⇒ x ̸≡L y

3. This implies that each element in S belongs to a different

equivalence class of ≡L.

4. Therefore ≡L is not finite, so by M-N L is not regular!

18

Example - Continued

Showing that L = {aibjck : if i = 1 then j = k} is not regular.

19

Exercise

Exercise. Using M-N, show that L = {anbn2 : n ≥ 0} is not regular.

Exercise. Using M-N, show that L = {w ∈ {0, 1}∗ : |w |
mod 3 = 0} is regular. (Hint: ≡L should have index 3.)

20

Connection with minimal DFAs

Uniqueness of minimal DFA

• A few lectures ago we saw a DFA minimization algorithm that we

claimed (without proof) produced the unique minimal DFA.

• We want to show that the algorithm could not have stumbled on a

different minimal DFA that accepted the same language.

• To do this, we first have to define what it means for a DFA to be

the same as (and, by extension, different than) another DFA.

NOTE This is not true for NFAs! Two NFAs can be “minimal“ while being

completely “different”.

21

Isomorphic DFAs

We call the concept of two DFAs being the same a DFA “isomorphism”.1

Definition (DFA isomorphism). We say two DFAs M = (Q,Σ, q0, δ,F)

and M ′ = (Q ′,Σ, q′0, δ
′,F ′) are isomorphic if there is a bijection ϕ where

ϕ : Q → Q ′ such that

1. ϕ(q0) = q′0
2. ϕ(δ(q, a)) = δ′(ϕ(q), a)

3. q ∈ F ⇐⇒ ϕ(q) ∈ F ′

Fact. If f : X → Y and |X | = |Y | then f is injective ⇐⇒ f is

surjective. (Why? Try induction on |X | = |Y |).

1Different mathematical objects have different definitions of isomorphism, for

instance, graph isomorphisms. 22

Uniqueness proposition

The following proposition will allow us to show that the minimal DFA

found in the DFA minimization lecture was unique up to isomorphism.

Proposition. The machine described in the last part of the M-N proof

((3) ⇒ (1)) is the unique minimal DFA that recognizes the language L.

23

Proof of the proposition

Proof.

24

Again, so what?

You should now be able to answer the following questions:

• How do I create an algorithm (and prove its correctness) that checks

whether two NFAs N1,N2 accept the same language?

• How do I create an algorithm (and prove its correctness) that checks

that two regular expressions R1,R2 recognize the same language?

25

	Motivation (1)
	Definitions and lemmas
	The Myhill-Nerode Theorem
	Motivation (2)
	Connection with minimal DFAs

