Theory of Computation

Tutorial - NFAs

Cesare Spinoso-Di Piano

- 1. NFAs
- 2. NFA-to-DFA

NFAs

NFAs

Formal definition of an NFA

Definition. A <u>nondeterministic</u> finite automaton (NFA) *M* is a 5 element tuple $M = (Q, \Sigma, \delta, q_0, F)$ where

- Q is the set of all states
- $\boldsymbol{\Sigma}$ is the alphabet
- * δ is the transition function $\delta : Q \times \{\Sigma \cup \{\lambda\}\} \to 2^Q$
- q₀ is the (unique) initial state
- F is the set of final states

An NFA is a machine that reads an input string and either accepts it or rejects it.

***Unlike a DFA:** The transition function of an NFA can accept λ and **always** returns a set.

Nondeterminism. Let N be an NFA with input string w. Nondeterminism allows N to try *all possible walks*. If at least one walk leads to a final state, then N accepts w.

Definition. Formally, given an NFA N the language accepted by N is

$$L(N) = \{w \in \Sigma^* : \delta^*(q_0, w) \cap F \neq \emptyset\}$$

where δ^* is the extended transition function $\delta^*: Q \times \Sigma^* \to 2^Q$.

Example

Example. Consider the following NFA over the alphabet $\Sigma = \{a\}$.

Input String: ^aa

Input String: aa

Input String: aa

 $\delta(q_1, a) = \emptyset$, no where to go. Are we done?

Input String: ^aa

Are we done? No, **M** tries another walk.

Input String: aa

Input String: aa

One of the possible walks ends in a final state, **M** accepts this string.

Input String: aaa

In both traces (top and bottom), do not end up in a final state. ${\bf M}$ rejects this string.

What is the language accepted by this NFA?

Exercise

Exercise. Given the following NFA M,

- What is $\delta^*(q_0, 01)$?
- Is 01 accepted by this NFA?
- What is the language accepted by this NFA?

Exercise

Exercise. Create an NFA that accepts the language $\{xwx : x \in \{0, 1\}, w \in \{0, 1\}^*\}.$

NFA-to-DFA

NFA-to-DFA Algorithm

Given an NFA $N = (Q, \Sigma, \delta, q_0, F)$, how can we convert it to a DFA $M = (Q', \Sigma, \delta', S_0, F')$ such that L(N) = L(M)?

Procedure:

- Step 1: Create an initial state S_0 . Assign it to $\{q_0\}$.
- Step 2: For each symbol $a \in \Sigma$, find all the states in N that can be reached from each of the states in S_0 . The set of reachable states in N will become a state in M i.e. $\delta'(S, a) = \bigcup_{p \in S_0} \delta(p, a)$.
- Step 3: Repeat Step 2 on every new state *S* (which are *sets* of states of *N*) that is generated. Repeat until no new states are found.
- Step 4: Assign Q' to the set of states generated in Step 3. δ' is defined as above.

The initial state for the DFA will be $S_0 := \{q_0\}$. The final states of the DFA will be all those states *S* that contain a final state from *F* (from the original *N*). Finally, if the original NFA *N* accepts λ , make S_0 a final state.

Example. Consider the following NFA *N*. $\Sigma = \{0, 1\}$. What is the language accepted by *N*?

Example. Convert the NFA N to a DFA M such that L(N) = L(M).

Example. Converting the NFA N to a DFA M using the procedure presented above.

Step 1. Begin with the start state $S_0 := \{q_0\}$.

Step 2. Find all the states that can be reached from S_0 for each letter in Σ . $\delta'(S_0, 0) = \underbrace{\{q_0, q_1\}}_{\text{New state!}}, \ \delta'(S_0, 1) = \{q_0\}$

Example

Step 3. Repeat Step 2 on every new state that is generated. Repeat until no new states are produced. This is shown in the table below.

States S	$\bigcup_{\rho \in \delta} \delta(p,0)$	$\bigcup_{p \in \delta} \delta(p, 1)$
	$p \in S$	$p \in S$
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_0\}$

Example

Step 4. Build the DFA.

States S	$\delta'(S,0)$	$\delta'(S,1)$
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_{0}\}$

Exercise. Convert the following NFA N into an equivalent DFA M. Your conversion should ensure that L(N) = L(M). $\Sigma = \{a, b\}$.

Theorem. The set of all languages accepted by NFAs is the same as the set of all languages accepted by DFAs. Why?

- 1. Every DFA is an NFA.
- 2. Every NFA can be converted into a DFA.

Corollary. A language is regular if and only if there is an FA (either a DFA or NFA) that accepts it.

Exercise. Prove that the language $\{xwx : x \in \{0,1\}, w \in \{0,1\}^*\}$ is regular.