Theory of Computation

Tutorial - Pushdown Automata

Cesare Spinoso-Di Piano

- 1. What is a Pushdown Automata?
- 2. Formalization
- 3. Designing PDAs

What is a Pushdown Automata?

Intuition

Formalization

Definition

Definition.¹ A nondeterministic pushdown automata (npda) is defined by the seven-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$, where

- Q is a finite set of states
- Σ is the input alphabet; $\Sigma_{\lambda} = \Sigma \cup \{\lambda\}$
- Γ is the stack alphabet; $\Gamma_{\lambda} = \Gamma \cup \{\lambda\}$
- $\delta: Q \times \Sigma_{\lambda} \times \Gamma_{\lambda} \to \mathcal{P}_{fin}(Q \times \Gamma^*)$ is the transition function where \mathcal{P}_{fin} is the finite powerset.²
- $q_0 \in \Sigma$ is the start state
- $z \in \Gamma$ is the stack start symbol
- $F \subseteq Q$ is the set of final states

¹There are many slightly different definitions for PDAs. They are all equivalent in that they all accept exactly the same family of languages.

²This wasn't necessary for NFAs because the powerset $\mathcal{P}(Q)$ was always finite.

Transition rule. The transition

$$\delta(q, a, b) = \{(p, c)\}$$

means while reading an $a \in \Sigma_{\lambda}$ on your input tape and a $b \in \Gamma_{\lambda}$ at the top of your stack in the state $q \in Q$ you will transition to state $p \in Q$ and will *replace* b at the top of the stack with $c \in \Gamma_{\lambda}^*$.

This is represented graphically as

Example. If we have the transition rule $\delta(q_1, a, b) = \{(q_2, cd), (q_3, \lambda)\}$, then this is represented graphically as

- From q₁ to q₂, reading *a*, popping *b* from the top of the stack and inserting *cd*. The leftmost symbol of *cd* should be at the top of the stack.
- From q_1 to q_3 , reading a and removing b from the top of the stack

Definition. The **instantaneous description** of a PDA *M* describes the contents of *M* at a particular instance in its computation. It is a triple $(q, w, u) \in Q \times \Sigma_{\lambda}^* \times \Gamma_{\lambda}^*$ where *q* is the current state, *w* is the input string left to read and *u* is the current state of the stack.

Transition rule. We represent a transition $\delta(q, a, b) = (p, y)$ for the PDA *M* using instantaneous descriptions as $(q, aw, bx) \succ_M (p, w, yx)$. **Definition.** The language accepted by a PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

is the set

$$L(M) = \{w \in \Sigma^* : (q_0, w, z) \succ^*_M (p, \lambda, u), p \in F, u \in \Gamma^*\}$$

Example. Consider the following PDA M. Suppose \$ is the stack start symbol and assume it is already place onto the stack. Let's rune through some computations.

- Input: aabbb
- Stack: |\$
- State: q_0

- Input: aabbb
- Stack: x|\$
- State: q_0

- Input: aabbb
- Stack: xx|\$
- State: q_0

- Input: aabbb
- Stack: xx|\$
- State: q₁

- Input: aabbb
- Stack: x|\$
- State: q₁

Input String: aabbb

- Input: aabbb
- Stack: |\$
- State: q₁

STUCK! Rejected.

What is the language accepted by this PDA?

Exercise. What symbols should be in the stack after the following transitions?

- $\delta(q_1, a, \lambda) = \{(q_2, cbb)\}, \text{ Stack: } b|$ \$.
- $\delta(q_1, a, c) = \{(q_2, \lambda)\}$, Stack: cb|\$.
- $\delta(q_1, a, \lambda) = \{(q_2, \lambda)\}$, Stack: cb|\$.
- $\delta(q_1, a, \$) = \{(q_2, \lambda)\}$, Stack: |\$.

Designing PDAs

- Use the same pattern matching abilities as DFAs/NFAs,
- But now augment this with a stack which can count the occurences of these patterns.
- $\bullet\,$ Caveat: You can only use 1 stack and once you read/pop, you can't 'go back'.^3

 $^{^{3}\}mbox{This}$ intuitive limitation will be discussed later when we show examples of languages that can't be accepted by PDAs.

Exercise

Exercise. Give a pushdown automata that accepts the language $L = \{a^i b^j c^k | i, j, k \ge 0 \text{ and } i + j = k\}$

Exercise

Exercise. Give a pushdown automata that accepts the language $L = \{a^{2n}b^{3n} : n \ge 0\}$

Exercise

Exercise. Give a pushdown automata that accepts the language $\{w \in \{a, b, c\}^* : n_a(w) + n_b(w) \neq n_c(w)\}$