Theory of Computation

Tutorial - Regular Expressions

Cesare Spinoso-Di Piano

- 1. Regular expressions
- 2. Regular Expressions to FAs
- 3. FAs to Regular Expressions

Regular expressions

Definition. Given an alphabet Σ , define a regular expression as follows:

- 1. $\emptyset, \lambda, a \in \Sigma$ are the **primitive** regular expressions.
- 2. If r_1 and r_2 are regular expressions, then so are $r_1 + r_2$, $r_1 \cdot r_2$, r_1^* and (r_1) .
- 3. A string *s* is a regular expression **if and only if** it can be obtained by applying operations in 2. to the primitive regular expressions in 1.

Examples.

- Example. Σ = {a, b}, (a + λ) · (b · a + Ø*) is a valid regular expression.
- Example. Σ = {a, b}, (a∩λ)−(b^R · Ø) is NOT a valid regular expression.

Definition. Given the regular expressions r, L(r) is the language **denoted by/represented by** the regular expression r where

$$L(\emptyset) = \emptyset, L(\lambda) = \{\lambda\}, L(a) = \{a\}, a \in \Sigma$$

If r_1, r_2 are regular expressions
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$
$$L(r_1r_2) = L(r_1)L(r_2)$$
$$L(r_1^*) = (L(r_1))^*$$

Example. Given the regular expressions $r = (a + bb)(ab)^*$, what is L(r)?

$$L(r) = L((a + bb)(ab)^*)$$

= $L(a + bb)L((ab)^*)$ Using 3.
= $(L(a) \cup L(bb))(L(ab))^*$ Using 2. and 4.
= $(\{a\} \cup \{bb\})(\{ab\})^*$ Using 1.
= $\{a, bb\}\{ab\}^*$
= $\{a(ab)^n : n \ge 0\} \cup \{bb(ab)^n : n \ge 0\}$

Exercise. Given the regular expressions $r = (0+01)(1+11)^*$, how many strings of length **3 or less** are there in L(r)?

Exercise. What is the the shortest string in $L(((a + \lambda)\emptyset^* + b + \emptyset)^*) \cap L(a(ba)^*)?$

Exercise. Write a regular expression r such that $L(r) = \{w \in \{0,1\}^* : w \text{ contains } 101\}.$

Exercise. Write a regular expression r such that $L(r) = \{w \in \{0,1\}^* : w \text{ has even length}\}.$

Exercise. Write a regular expression r such that $L(r) = \{vwv : |v| = 2, v, w \in \{a, b\}^*\}.$

Definition. Two regular expressions r_1, r_2 are equivalent $(r_1 \equiv r_2)$ if and only if $L(r_1) = L(r_2)$.

Example. True or False. $(r + \emptyset)^* \lambda = r^*$. This is True since

$$L((r + \emptyset)^*\lambda) = L((r + \emptyset)^*)L(\lambda)$$
$$= (L(r + \emptyset))^*L(\lambda)$$
$$= (L(r) \cup \emptyset)^*L(\lambda)$$
$$= (L(r))^*$$
$$= L(r^*)$$

In general, regular expression "arithmetic" is avoided in favor of FA manipulations.

Regular Expressions to FAs

Theorem. Given a regular expression r, there exists an NFA N such that L(M) = L(r).

Corollary. Given a regular expression r, there exists an FA M such that L(M) = L(r).

Example. Given $r = ab^*aa + b(ba)^*$, find an FA *M* such that L(M) = L(r).

- 1. Split the language into components. Here we have $L(ab^*aa)$, L(b), $L((ba)^*)$.
- Draw an FA for each regular language separately. An FA for L(ab*aa).

An FA for L(b).

An FA for $L((ba)^*)$.

An FA for $L(b(ba)^*)$.

Combining all these machines together.

Exercise. Create an NFA and a DFA that accept $L((abb)^* + (a^*bb^*))$.

FAs to Regular Expressions

Generalized Transition Graph

Theorem. Given a finite automaton M, there exists a regular expressions r such that L(r) = L(M).

How can we convert a finite automata to a regular expression? Generalized Transition Graphs.

Definition. A generalized transition graph is a transition graph whose edges are labeled with regular expressions. Therefore, the transition $\delta'(q, r)$ executes if the GTG reads any string that belongs to L(r).

Example. The following GTG is of an FA that accepts $L(a^*(ba + a)(b + \lambda)a^*)$.

FA to RegExp

How can we convert a finite automata to a regular expression using GTGs?

- 1. Convert the FA to an NFA with a single final state (which should be distinct from q_0).
- 2. Convert the FA to a GTG.
- 3. Remove each intermediate state while preserving its role in the GTG.
- 4. Repeat until only the initial and final states are left.

The resulting GTG should have the following form.

Then we see that this GTG reduces to the regular expression: $r = r_{ii} * r_{ij} (r_{jj} + r_{ji}r_{ii} * r_{ij})^*$ A more detailed explanation of the algorithm.

- 1. Convert the FA to an NFA with a single final state (which should be distinct from q_0).
- 2. Convert the NFA into a generalized transition graph. Let r_{ij} stand for the label (a regular expression) of the edge from q_i to q_j .
- 3. If the GTG only has the initial state q_i and final state q_j , compute the final regular expression $r = r_{ii} r_{ij} (r_{jj} + r_{ji}r_{ii} r_{ij})^*$.

FA to RegExp

4. If the GTG has three states, the initial q_i state, the final state q_j and third state q_k . Introduce new edges, labeled $r_{pq} + r_{pk}r_{kk}*r_{kq}$, for p = i, j, q = i, j. When this is done, remove q_k and its associated edges.

 $r_{ii} + r_{ik}r_{kk}^*r_{ki} \qquad r_{jj} + r_{jk}r_{kk}^*r_{kj}$ q_i $r_{ji} + r_{jk}r_{kk}^*r_{ki}$ q_j

FA to RegExp

5. If the GTG has more than three states, pick a state q_k , apply the equation in step 4 for all pairs of states (q_i, q_j) , $i \neq k, j \neq k$.

6. Repeat step 2 to 4 until the GTG has only an initial and final state and then apply $r = r_{ii}^* r_{ij} (r_{jj} + r_{ji} r_{ii}^* r_{ij})^*$.

Example. Find a regular expression that **denotes** the language **accepted** by the following NFA.

The equivalent GTG.

Pick a state to remove. Here we start with state 2.

Observe in what way 2 acts as an intermediate state.

- From 1 to 3: $(a + b)b^*a$
- From 4 to 3: *bb***a*

Remove state 2 and its associated edges. Add to edges 1 to 3 and 4 to 3 the intermediate regular expressions.

Pick state 4 to remove and find how it acts as an intermediate state.

• From 1 to 3:
$$(a + b)b^*a + bbb^*a$$

Remove state 4 and its associated edges. Add to edges 1 to 3 the intermediate regular expression.

$$\underbrace{ 1 } \underbrace{(a+b)b^*a+bbb^*a}_{3}$$

Obtain the final regular expression: $(a + b)b^*a + bbb^*a$

Exercise. Find a regular expression that denotes the language $L = \{w \in \{0,1\}^* : n_0(w) \mod 2 = 0 \& n_1(w) \mod 2 = 0\}$

Theorem. The family of languages accepted by regular expressions is exactly the same as the family of languages accepted by FAs. Or, in other words, a language L is regular if and only if there exists a regular expression r such that L = L(r).